《方程的根与函数的零点》教学设计一、学情分析程度差异性:中低等程度的学生占大多数,程度较高与程度很差的学生占少数.知识、心理、能力储备:学生之前已经学习了函数的图象和性质,现在基本会画简单函数的图象,也会通过图象去研究理解函数的性质,这就为学生理解函数的零点提供了帮助,初步的数形结合知识也足以让学生直观理解函数零点的存在性,因此从学生熟悉的二次函数的图象入手介绍函数的零点,从认知规律上讲,应该是容易理解的.二、设计思想教学理念:培养学生学习数学的兴趣,学会严密思考,并从中找到乐趣.教学原则:注重各个层面的学生.教学方法:三学一导.三、教学目标1.知识与技能:①理解函数(结合二次函数)零点的概念,领会函数零点与相应方程的关系,掌握零点存在的判定条件;②培养学生的观察能力;2.过程与方法:①通过观察二次函数图象,并计算函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法;②让学生归纳整理本节所学知识.3.情感、态度与价值观:在函数与方程的联系中体验数学中的转化思想的意义和价值.四、教学重点、难点重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法.难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法.五、教学过程设计1.指导学生进行课前学习预习教材,完成以下习题:2.指导学生进行课堂学习(1)方程的根与函数的零点以及零点存在性的探索问题1:先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:如图1①方程与函数②方程与函数③方程与函数页5
图1[师生互动]师:教师引导学生解方程、画函数图象、分析方程的根与图象和x轴交点坐标的关系,推广到一般的方程和函数引出零点概念.零点概念:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.师:填表格函数函数的零点方程的根生:经过独立思考,填完表格师提示:根据零点概念,提出问题,零点是点吗?零点与函数方程的根有何关系?生:经过观察表格,得出第一个结论师再问:根据概念,函数y=f(x)的零点与函数y=f(x)的图象与x轴交点有什么关系生:经过观察图像与x轴交点完成解答,得出第二个结论师:概括总结前两个结论(请学生总结).1)概念:函数的零点并不是“点”,它不是以坐标的形式出现,而是实数。例如函数的零点为x=-1,32)函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标.3)方程有实数根函数的图象与轴有交点函数有零点.师:引导学生仔细体会上述结论.再提出问题:如何并根据函数零点的意义求零点?生:可以解方程而得到(代数法);可以利用函数的图象找出零点.(几何法)问题3:是不是所有的二次函数都有零点?师:仅提出问题,不须做任何提示.生:根据函数零点的意义探索研究二次函数的零点情况,并进行交流,总结概括形成结论.二次函数的零点:看△页5
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.第一阶段设计意图本节的前半节一直以二次函数作为模本研究,此题是从特殊到一般的升华,也全面总结了二次函数零点情况,给学生一个清晰的解题思路,进而培养学生归纳总结能力.(2)零点存在性的探你能将结论进一步推广到吗?新知:对于函数,我们把使的实数x叫做函数的零点(zeropoint).反思:函数的零点、方程的实数根、函数的图象与x轴交点的横坐标,三者有什么关系?一般地,我们有:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线并且有f(a)·f(b)0时,函数在区间(a,b)内没有零点吗?探究2:如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,并且有f(a)·f(b)