方程的根与函数的零点
引例1:判断下列方程是否有根,有几个实数根?(1)(2)(3)
函数的图象与x轴交点方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函数函数的图象方程的实数根x1=-1,x2=3x1=x2=1无实数根(-1,0)、(3,0)(1,0)无交点x2-2x-3=0xy0-132112-1-2-3-4..........xy0-132112543.....yx0-12112y=x2-2x+3知识探究(一):方程的根与函数的零点
方程ax2+bx+c=0(a>0)的根函数y=ax2+bx+c(a>0)的图象判别式△=b2-4ac△>0△=0△<0函数的图象与x轴的交点有两个相等的实数根x1=x2没有实数根xyx1x20xy0x1xy0(x1,0),(x2,0)(x1,0)没有交点两个不相等的实数根x1、x2
对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点。函数零点的定义:注意:零点指的是一个实数零点是一个点吗?
函数y=f(x)有零点方程f(x)=0有实数根(代数法)函数y=f(x)的图象与x轴有交点.(几何法)等价关系
求函数零点的步骤:(1)令f(x)=0;(2)解方程f(x)=0;(3)写出零点例1:求函数的零点。
练习1.求下列函数的零点:(1);(2).练习2.已知函数的定义域为R的奇函数,且在有一个零点,则的零点个数为_____课堂练习1
xy0
abab问题6:如果将定义域改为区间[a,b]观察图像说一说零点个数的情况,有什么发现?abxy0结论
abxy0函数的图像在闭区间[a,b]上连续不断。结论
零点存在定理:
结论理解思考1;若只给条件f(a)·f(b)0时,函数y=f(x)在区间(a,b)内一定没有零点吗?思考4:若在区间(a,b)有零点时,一定有f(a)·f(b)