2022年高中数学第三章函数的应用3.1函数与方程3.1.1方程的根与函数的零点 教学设计(人教A版必修1)
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
学习必备欢迎下载《方程的根与函数的零点》教学设计1教材分析1.1地位与作用《方程的根与函数零点的关系》是“函数的应用”这一单元的第一节内容,课标要求“结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。”第三章《函数的应用》的课程目标之一是“通过本章的学习,使学生学会二分法求方程近似解的方法,从中体会函数与方程之间的联系。”《方程的根与函数零点的关系》一课的主要教学内容有函数零点的定义和函数零点存在性判定依据,这两者显然是为“用二分法求方程近似解”这一“函数的应用”服务的。而从中学数学内容结构来看,本课的内容也可以看作是函数概念的一个子概念,是函数概念外延的一次扩充。给出函数零点概念的目的是把函数与方程之间联系起来,用函数的观点统领中学代数知识,把所有的中学代数问题都统一到函数的思想指导之下,从这个角度看本节课还应承载建立函数与方程教学思想的任务。1.2对函数零点的定义的解构对于函数y=f(x),把使f(x)=0成立的实数x叫做函数y=f(x)的零点。教科书把定义解释为:方程f(x)=0有实根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点。教材严格按照课标要求只体现了函数y=f(x)的零点与方程f(x)=0的解的关系,没有对函数与方程的联系与区别这方面的内容加以阐述,这样的话学生在学习了“函数的零点”这一内容之后,仍然不可能对函数与方程的关系有较明确的认识。教学用书提出:“给出函数零点的概念后,要让学生明确“方程的根”与“函数的零点”尽管有密切的联系,但不能将它们混为一谈。之所以介绍通过求函数的零点求方程的根,是因为函数的图象和性质,为理解函数的零点提供了直观认识,并为判定零点是否存在和求出零点提供了支持,这就使方程的求解与函数的变化形成联系,有利于分析问题的本质。”这虽然是函数与方程的关系中较为表层的东西,也应在函数零点的概念建立的过程有所铺垫。精品学习资料可选择pdf第1页,共11页----------------------- 学习必备欢迎下载函数的零点,是一个三位一体的概念,从方程的角度看,为相应方程f(x)=0的实数根;从形的角度看,为函数y=f(x)的图像与x轴的交点;从函数与自变量相对应的角度看,就是使函数值为0的实数x,是一个数。方程f(x)=0有实根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点。可“析出”转化的数学思想方法,不仅可以让学习者体验到函数与方程的数学思想方法,还明显蕴含着丰富的数形结合的数学思想方法,对型如f(x)=g(x)的方程都划归为f(x)-g(x)=0的形式,并转化为函数F(x)=f(x)-g(x)的零点问题。还可“析出”化归的数学思想方法。教科书选取探究具体的一元二次方程的根与其对应的一元二次函数的图像与x轴的交点的横坐标之间的关系,作为本书内容的入口。教材把重点是放在第二个转化,即重在从函数角度来研究方程问题。但如果在教学中把“方程f(x)=0的实数根”有意无意地替换为“解方程f(x)=0,解方程意味着求方程的所有解,”这就把原来的具体单点问题扩大为整体问题,通过两个转化,于是“求零点的个数”问题就产生了,这是对函数的零点概念的过度解构,也是对函数概念外延的过度扩充。导致后续的叫教学行为、学生活动偏离教学主线。1.3对函数零点的存在性判定依据的解构(说定理似乎不妥)如果函数y=f(x)在区间[a,b]上是连续不断的一条曲线,并且有f(a)f(b)0)的图象函数的图象与x轴的交点问题1:一元二次方程的根与相应的二次函数的图象之间有怎样的关系?(幻灯显示)精品学习资料可选择pdf第5页,共11页----------------------- 学习必备欢迎下载学生讨论,得出结论:一元二次方程的根就是函数图象与x轴交点的横坐标.意图:通过回顾二次函数图象与x轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备.3、一般函数的图象与方程根的关系.问题2:其他的函数与方程之间也有类似的关系吗?请举例!师生互动,在学生提议的基础上,老师加以改善,现场在几何画板x下展示类似如下函数的图象:y=2x-4,y=2-8,y=ln(x-2),y=(x-1)(x+2)(x-3),y=㏑x+2x-6比较函数图象与x轴的交点和相应方程的根的关系,从而得出一般的结论:方程f(x)=0有几个根,y=f(x)的图象与x轴就有几个交点,且方程的根就是交点的横坐标.意图:通过各种函数,将结论推广到一般函数,为零点概念做好铺垫.(二)辨析讨论,深化概念.4、函数零点.概念:对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.(幻灯显示)2即兴练习:函数f(x)=x(x-16)的零点为()A.(0,0),(4,0)B.0,4C.(–4,0),(0,0),(4,0)D.–4,0,4设计意图:及时矫正“零点是交点”这一误解.(板书)说明:①函数零点不是一个点,而是具体的自变量的取值.②求函数零点就是求方程f(x)=0的根.5、归纳函数的零点与方程的根的关系.问题3:函数的零点与方程的根有什么共同点和区别?(板书)(1)联系:①数值上相等:求函数的零点可以转化成求对应方程的根;②存在性一致:方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点.函数的零点,从方程的角度看,为相应方程f(x)=0的实数根;从形的角度看,为函数y=f(x)的图像与x轴的交点;从函数与自变量相对应的角度看,就是使函数值为0的实数x,是一个数。(2)区别:零点对于函数而言,根对于方程而言.以上关系说明:函数与方程有着密切的联系,函数问题有时可转化为方程问题,同样,有些方程问题可以转化为函数问题来求解,这正是函数与方程思想的基础.精品学习资料可选择pdf第6页,共11页----------------------- 学习必备欢迎下载练习:求下列函数的零点:(幻灯显示)设计意图:使学生熟悉零点的求法(即求相应方程的实数根).(三)实例探究,归纳定理.6、零点存在性定理的探索.(幻灯显示)问题4:在怎样的条件下,函数y=f(x)在区间[a,b]上一定有零点?2探究:(1)观察二次函数f(x)=x-2x-3的图象:在区间[-2,1]上有零点______;f(-2)=_______,f(1)=_______,f(-2)f(1)_____0·(“).”在区间(2,4)上有零点______;f(2)·f(4)____0(“”).(2)观察函数的图象:(幻灯显示①在区间(a,b)上___(有/无)零点;f(a)·f(b)___0(“”).②在区间(b,c)上___(有/无)零点;f(b)·f(c)___0(“”).③在区间(c,d)上___(有/无)零点;f(c)·f(d)___0(“”).意图:通过归纳得出零点存在性判定.7、零点存在性判定:(板书)一般地,我们有:如果函数y=f(x)在区间[a,b]上的图象是连续不断一条曲线,并且有f(a)·f(b)

10000+的老师在这里下载备课资料