2022年高中数学第三章函数的应用3.1函数与方程3.1.1方程的根与函数的零点 说课稿 (人教A版必修1)
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
3.1.1方程的根与函数的零点说课稿一、教材分析《方程的根与函数的零点》是人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节的第一课时,主要内容是函数零点的概念、函数零点与相应方程根的关系,函数零点存在性定理,是一节概念课.本节课是在学生学习了基本初等函数及其相关性质,具备初步的数形结合的能力基础之上,利用函数图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法,为下节“用二分法求方程的近似解”和后续学习奠定基础.因此本节内容具有承前启后的作用,地位至关重要.二、教学目标1、知识与技能(1)通过观察二次函数的图像,准确判断一元二次方程根的存在性及根的个数,描述函数的零点与方程的根的关系.(2)理解并会用函数在某个区间上存在零点的判定方法.2、情感、态度与价值观在函数与方程的联系中体验数形结合思想与转化思想的意义与价值,发展学生对变量数学的认识,体会函数知识的核心作用.三、教学重点、难点重点:了解函数零点的概念,体会方程的根与函数零点之间的联系,掌握函数零点存在性的判断.难点:准确认识零点的概念,在合情推理中让学生体会到判定定理的充分非必要性,能利用适当的方法判断零点的存在或确定零点.四、学情分析高一学生已经学习了函数的概念,对初等函数的性质、图象已经有了一个比较系统的认识与理解.特别是对一元二次方程和二次函数在初中的学习中已是一个重点,对这块内容已经有了很深的理解,所以对本节内容刚开始的引入有了很好的铺垫作用,但针对高一学生,刚进人高中不久,学生的动手,动脑能力,以及观察,归纳能力都还没有很全面的基础上,在本节课的学习上还是会遇到较多的困难,所以我在本节课的教学过程中,从学生已有的经验出发,环环紧扣提出问题引起学生对结论追求的愿望,将学生置于主动参与的地位.五、教法与学法在教法上,本次课采用以导学案教学,体现以学生为主体的教学方法。在教学手段上,我一是采取多媒体课件、几何画板相结合,它既便于学生直观,节约时间,又能利用情境营造课堂氛围,引发学生的兴趣。 在学法上,设置一个个问题链,并以此为主线,由浅入深、的循序渐进,以培养学生探究精神为出发点,着眼于知识形成和发展,注重学生的学习体验,给不同层次的学生提供思考、创造、表现和成功的舞台.六、教学过程(一)以旧带新,引入课题1、判断下列方程根的个数,并求解(1)x22x30(2)x22x10(3)x22x302、分别作出(1)中方程相对应的函数图象,并完成下列表格:方程x22x30x22x10x22x30函数yx22x3yx22x1yx22x3函数图象方程的实数根函数的图像与x轴的交点思考:一元二次方程的根与对应的二次函数的图象与x轴的交点有什么关系?3、将上面特殊的一元二次方程推广到一般的一元二次方程ax2bxc0(a0)及其相应的二次函数yax2bxc(a0)的图象与x轴的交点关系,上述结论是否成立?:判别式△=△>0△=0△<0b24ac方程ax2bxc0(a0)的根函数yax2bxc(a0)图象函数的图象与x轴的交点 【说明】从2、3的表格中可以引导学生观察出一元二次方程的根也就是其对应的二次函数的图象与x轴交点的横坐标,也能得出对应关系:一元二次方程有实根所对应的二次函数与x轴有交点;将一元二次方程的根与所对应的二次函数的图象与x轴的交点关系,推广到一般的方程与对应的函数的图象与x轴的关系:方程fx0的根,也就是其所对应的函数yfx的图象与x轴交点的横坐标.方程fx0有实根函数yfx的图象与x轴有交点函数的零点:对于函数yfx,我们把使fx0的实数x叫做函数yfx的零点.三者等价关系:方程fx0有实数根函数yfx的图象与x轴有交点函数yfx有零点.试一试:求下列函数的零点.(1)f(x)x25x6(2)f(x)2x1小结求函数零点的方法:二、动手探究,揭示定理1、观察二次函数f(x)x22x3图象(1)f(2)_____,f(1)____,f(2)f(1)____0(或)f(x)在区间[2,1]上___零点;(2)f(2)f(4)_____0(或),f(x)在区间[2,4]上____零点;2、观察下面函数y=f(x)的图象(1)f(a)f(b)__0(或),f(x)在区间[a,b]上___(有|无)零点,(2)f(b)f(c)__0(或),f(x)在区间[b,c]上___(有|无)零点,(3)f(c)f(d)__0(或),f(x)在区间[c,d]上___(有|无)零点由以上的探索你发现了什么?【说明】通过1、2的探究让学生动手实验和讨论,教师对探究结果进行展示和点评,引导学生归纳总结函数存在零点的条件, 函数零点存在定理:如果函数yfx在区间a,b上的图象是连续不断的一条曲线,并且有fafb0,那么,函数yfx在区间a,b内有零点,即存在ca,b,使得fc0,这个c也就是方程fx0的根.思考:(1)如果函数具备上述的条件时,函数有多少个零点?零点个数是惟一吗?(2)如果把结论中的条件“连续不断”除去不要,结论还成立吗?去掉“fafb0”呢?(3)函数在yfx在(a,b)上有零点,能得出fafb0吗?【说明】通过列举几个函数的图象加深学生对零点定理和思考问题(1)(2)(3)的理解3、反馈练习:(1)函数f(x)ex4x在哪个区间有零点()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)2(2)函数f(x)lnx的零点所在的大致区间是()x1A.(1,2)B.(2,3)C.(1,)和(3,4)D.(e,)e【说明】两个反馈练习,使学生初步运用定理来解决“找出函数零点所在区间”这一类问题,加深对函数在某一区间上存在零点的判定定理的理解,再次突出了本节课“函数零点存在性的判断”的重点.七、反思总结八、布置作业教材P88练习第1题P92A组第2题

10000+的老师在这里下载备课资料