方程的根与函数的零点(习题课)
例1:x2+(m-3)x+m=0求m的范围(1)两个正根(2)有两个负根(3)两个根都小于1(4)两个根都大于(5)一个根大于1,一个根小于1(6)两个根都在(0,2)内(8)两个不等根有且仅有一个在(0,2)内(7)一个根在(-2,0)内,另一个根在(1,3)内注涉及方程f(x)=ax2+bx+c=0(a≠0)的实根分布问题,一般情况下要从四个方面考虑:①f(x)图象的开口方向;③f(x)图象的对称轴与区间的关系;②方程f(x)=0的判别式;④区间端点处函数值的符号.
1.方程f(x)=0有两正根小结、二次方程ax2+bx+c=0(a>0)的实根分布问题记f(x)=ax2+bx+c(a>0),△=b2-4ac≥0.x1+x2=->0abacx1x2=>0△=b2-4ac≥0f(0)>0.->02ab2.方程f(x)=0有两负根△=b2-4ac≥0.x1+x2=-0△=b2-4ac≥0f(0)>0.-0.-0△=b2-4ac≥0m