2022年高中数学第三章函数的应用3.1函数与方程3.1.1方程的根与函数的零点 教案(人教A版必修1)
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
《方程的根与函数的零点》教学设计方案课题名称方程的根与函数的零点科 目数学年级⑴高一教学时间一课时(45分钟)学习者分析1.一般特征学生大部分来自农村,但都是一些基础较好的学生(重点班学生),知识基础差异不大,探究能力差异较大,在教学过程中可以适当拓宽知识面,以便部分学生有更好的发展空间。2.入门能力(1)通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力。这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。(2)学生虽然对二次函数的图像和性质有所了解,但利用函数的观点看问题能力较缺乏,所以教学过程中应该给予学生适当的点拨,从而突出教学重点和难点。3.学习风格学生对课本上的知识比较缺乏兴趣,所以本节课应该用多媒体辅助教学,采用师生互动的方法进行教学。一、情感态度与价值观ü1、.通过对本节课的学习与认识,特别是对三个数学思想的认识与体悟,培养学生学习数学的兴趣,培养学生探究问题的能力ü2、通过本节课的学习,培养学生认真、严谨、合作的学习品质。 教学目标二、过程与方法ü1. 通过观察探讨,学生认识与领会二次函数图像与二次方程根的关系,最终认识函数零点的概念。从而渗透由特殊到一般的研究思想(认知规律)。ü2. 在认识函数零点概念的基础上,通过观察总结,学生总结概括函数图像与X轴的交点、方程有无实数根这三者之间关系,从而渗透函数与方程思想。ü3.在认识和掌握函数图像与X轴的交点、方程有无实数根这三者之间关系基础上,通过实例引导,学生可以尽最大可能的概括出零点判定的方法。从而培养学生数形结合的数学思想。三、知识与技能1.以二次函数图像与一元二次方程的关系为突破口,了解函数零点的概念。发现并掌握方程的根、函数图像与x轴的交点与函数零点之间的关系。2.掌握连续函数在某区间上存在零点的判定方法教学重点、难点1. 发现和认识函数零点与方程根之间的关系2. 探究和掌握连续函数在某区间上存在零点的判定方法。教学资源 几何画板、ppt课件、课本《方程的根与函数的零点》教学活动过程描述一、课题引入1、问题一(让学生看多媒体屏幕)某地区某天早晨五点的温度是-2℃,十二点的温度是12℃.在这段时间内,假设温度是均匀变化的1)是否存在某时刻的温度为0℃?2)你能从数学角度解释这一现象吗?问题解决方法:小组讨论设计意图:通过对实际问题的探讨,为一般函数与方程的关系认识做铺垫。2、问题二(让学生看多媒体屏幕) 教学活动1初步建立零点的概念求方程的实数根,画出函数的图像;并观察他们之间的联系?问题解决:让学生上黑板板演教师:用几何画板说明这二者之间的关系,并引出函数零点的概念设计意图:通过认识前面一次函数与直线、二次函数与其图像的关系,学生利用一般到特殊到特殊的认知规律对零点的概念有个初步的认识,从而借机引入本课。教学活动2认识和掌握零点概念二、探究一1、(让学生看多媒体屏幕)函数的零点:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点。设计意图:通过多媒体屏幕,让学生了解零点概念的具体定义。2、(用几何画板和学生分析二次函数图像与二次方程根的关系,得到函数的零点、方程的根、函数f(x)图像与x轴的交点之间的关系。)方程f(x)=0有实数根函数y=f(x)的图像与x轴有交点函数y=f(x)有零点设计意图:通过观察分析,学生在掌握以上三者关系的基础上,深刻体会到函数与方程的关系,渗透函数与方程的思想。3、巩固练习(屏幕展示)求下列函数的零点(1)    (2)设计意图:学生认识了前面两个问题后,学生学会理解求函数零点的实质。 教学活动3学会函数判断零点 三、探究二1、问题一:利用几何画板,初步认识二次函数存在零点的特点。设计意图:通过数与形的结合,学生初步认识零点存在的特点,为下面的问题层层引入做好铺垫。再者让学生体会数学结合的思想。2、问题二:(在上一个问题的基础上,提出这个问题)仅满足f(a)·f(b)

10000+的老师在这里下载备课资料