3.1.1《方程的根与函数的零点》导学案【学习目标】1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2.掌握零点存在的判定条件.【重点难点】重点:零点的概念及存在性的判定.[来源:学|科|网]难点:零点的确定.【知识链接】(预习教材P86~P88,找出疑惑之处)复习1:一元二次方程+bx+c=0(a0)的解法.一二次方程的根的判别式=.当0,方程有两根,为;当0,方程有一根,为;当0,方程无实数.复习2:方程+bx+c=0(a0)的根与二次函数y=ax+bx+c(a0)的图象之间有什么关系?判别式一元二次方程二次函数图象【学习过程】※学习探究探究任务一:函数零点与方程的根的关系问题:①方程的解为,函数的图象与x轴有个交点,坐标为.②方程的解为,函数的图象与x轴有个交点,坐标为.③方程的解为,函数的图象与x轴有个交点,坐标为.根据以上结论,可以得到:一元二次方程的根就是相应二次函数的图象与x轴交点的.你能将结论进一步推广到吗?新知:对于函数,我们把使的实数x叫做函数的零点(zeropoint).反思:函数的零点、方程的实数根、函数的图象与x轴交点的横坐标,三者有什么关系?
试试:(1)函数的零点为;(2)函数的零点为.小结:方程有实数根函数的图象与x轴有交点函数有零点.探究任务二:零点存在性定理问题:①作出的图象,求的值,观察和的符号②观察下面函数的图象,[在区间上零点;0;在区间上零点;0;在区间上零点;0.新知:如果函数在区间上的图象是连续不断的一条曲线,并且有