方程函数x2-2x-3=0y=x2-2x-3x2-2x+1=0y=x2-2x+1x2-2x+3=0y=x2-2x+3观察下列三组方程与相应的二次函数复习引入
练习1.利用函数图象判断下列方程有没有根,有几个根:(1)-x2+3x+5=0;(2)2x(x+2)=-3;(3)x2=4x-4;(4)5x2+2x=3x2+5.
讲授新课函数零点的概念:
讲授新课对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.函数零点的概念:
探究1如何求函数的零点?
探究2零点与函数图象的关系怎样?探究1如何求函数的零点?
方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点探究2零点与函数图象的关系怎样?探究1如何求函数的零点?
探究3二次函数零点如何判定?
探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac.
对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac.判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0=0<0探究3二次函数零点如何判定?
判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0两不相等实根=0<0探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac.
判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0两不相等实根两个零点=0<0探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac.
判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0两不相等实根两个零点=0两相等实根<0探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac.
判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0两不相等实根两个零点=0两相等实根一个零点<0探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac.
判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0两不相等实根两个零点=0两相等实根一个零点<0没有实根探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac.
判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0两不相等实根两个零点=0两相等实根一个零点<0没有实根0个零点探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac.