2022年高中数学第三章函数的应用3.1函数与方程3.1.1方程的根与函数的零点 课件(人教A版必修1)
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
方程函数x2-2x-3=0y=x2-2x-3x2-2x+1=0y=x2-2x+1x2-2x+3=0y=x2-2x+3观察下列三组方程与相应的二次函数复习引入 练习1.利用函数图象判断下列方程有没有根,有几个根:(1)-x2+3x+5=0;(2)2x(x+2)=-3;(3)x2=4x-4;(4)5x2+2x=3x2+5. 讲授新课函数零点的概念: 讲授新课对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.函数零点的概念: 探究1如何求函数的零点? 探究2零点与函数图象的关系怎样?探究1如何求函数的零点? 方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点探究2零点与函数图象的关系怎样?探究1如何求函数的零点? 探究3二次函数零点如何判定? 探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac. 对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac.判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0=0<0探究3二次函数零点如何判定? 判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0两不相等实根=0<0探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac. 判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0两不相等实根两个零点=0<0探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac. 判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0两不相等实根两个零点=0两相等实根<0探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac. 判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0两不相等实根两个零点=0两相等实根一个零点<0探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac. 判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0两不相等实根两个零点=0两相等实根一个零点<0没有实根探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac. 判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0两不相等实根两个零点=0两相等实根一个零点<0没有实根0个零点探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac.

10000+的老师在这里下载备课资料