引入1.画出y=x2-x-6的函数图像
引入1.画出y=x2-x-6的函数图像-21O3xy
零点:对于函数y=f(x)在实数a处的值等于0,即f(a)=0,则a叫做函数y=f(x)的零点。
对零点的理解:
对零点的理解:"数"的角度:
对零点的理解:"数"的角度:即是使f(x)=0的实数x的值
对零点的理解:"数"的角度:"形"的角度:即是使f(x)=0的实数x的值
对零点的理解:"数"的角度:"形"的角度:即是使f(x)=0的实数x的值即是函数f(x)的图象与x轴的交点的横坐标
对零点的理解:"数"的角度:"形"的角度:即是使f(x)=0的实数x的值即是函数f(x)的图象与x轴的交点的横坐标求函数零点的方法:
对零点的理解:"数"的角度:"形"的角度:即是使f(x)=0的实数x的值即是函数f(x)的图象与x轴的交点的横坐标求函数零点的方法:(1)方程法:
对零点的理解:"数"的角度:"形"的角度:即是使f(x)=0的实数x的值即是函数f(x)的图象与x轴的交点的横坐标求函数零点的方法:(1)方程法:解方程f(x)=0,得到y=f(x)的零点
对零点的理解:"数"的角度:"形"的角度:即是使f(x)=0的实数x的值即是函数f(x)的图象与x轴的交点的横坐标求函数零点的方法:(1)方程法:(2)图象法:解方程f(x)=0,得到y=f(x)的零点
对零点的理解:"数"的角度:"形"的角度:即是使f(x)=0的实数x的值即是函数f(x)的图象与x轴的交点的横坐标求函数零点的方法:(1)方程法:(2)图象法:解方程f(x)=0,得到y=f(x)的零点画出函数y=f(x)的图象,其图象与x轴交点的横坐标是函数y=f(x)的零点
结论:零点存在定理函数零点的存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)