奋斗的资料3.1.1方程的根与函数的零点(教学设计)教学目标:知识与技能:理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.过程与方法:零点存在性的判定.情感、态度、价值观:在函数与方程的联系中体验数学中的转化思想的意义和价值.教学重点:重点:零点的概念及存在性的判定.难点:零点的确定.一、复习回顾,新课导入讨论:一元二次方程的根与二次函数数的图象有什么关系?先观察几个具体的一元二次方程及其相应的二次函数,分别选取方程有两个不同的根、重根和无实数根三种类型.方程与函数;方程与函数;方程与函数;再请同学们解方程,并分别画出三个函数的草图.一元二次方程有两不同根就是相应的二次函数的图象与轴有两个不同交点,且其横坐标就是根;一元二次方程有两个重根就是相应的二次函数的图象与轴一个交点,且其横坐标就是根;一元二次方程无实数根就是相应的二次函数的图象与轴没有交点;总之,一元二次方程的根就是相应的二次函数的图象与轴的交点的横坐标.二、师生互动,新课讲解:1、函数的零点对于函数,我们把使的实数叫做函数的零点(zeropoint).https://shop112180859.taobao.com/shop/view_shop.htm?tracelog=twddp&user_number_id=2160821148
奋斗的资料显然,函数的零点就是方程的实数根,也就是函数的图象与轴的交点的横坐标.方程有实数根Û函数的图象与轴有交点Û函数有零点.2、函数零点的判定:研究方程的实数根也就是研究相应函数的零点,也就是研究函数的图象与x轴的交点情况。 问题1: 如果把函数比作一部电影,那么函数的零点就像是电影的一个瞬间,一个镜头。有时我们会忽略一些镜头,但是我们仍然能推测出被忽略的片断。现在我有两组镜头(如图,第一组第一行两图,第二组第二行两图),哪一组能说明他的行程一定曾渡过河? 第Ⅰ组能说明他的行程中一定曾渡过河,而第Ⅱ组中他的行程就不一定曾渡过河。问题2:将河流抽象成x轴,将前后的两个位置视为A、B两点。请问当A、B与x轴怎样的位置关系时,AB间的一段连续不断的函数图象与x轴一定会有交点?A、B两点在x轴的两侧。问题3:A、B与x轴的位置关系,如何用数学符号(式子)来表示?A、B两点在x轴的两侧。可以用f(a)·f(b)