高中数学人教A版必修1 第三章 函数的应用 3.1.1 方程的根与函数的零点 说课稿
加入VIP免费下载

高中数学人教A版必修1 第三章 函数的应用 3.1.1 方程的根与函数的零点 说课稿

ID:1212420

大小:230.56 KB

页数:6页

时间:2022-08-11

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
3.1.1《方程的根与函数的零点》说课稿一、教材分析函数是中学数学的核心概念,核心的原因之一就在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。本节课是在学生学习了基本初等函数及其相关性质,具备初步的数形结合的能力基础之上,利用函数图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法,为下节“用二分法求方程的近似解”和后续学习奠定基础。因此本节内容具有承前启后的作用,地位至关重要.二、教学目标分析根据本节课的教学内容以及新课标对本节课的教学要求,结合以上对教材以及学情的分析,我制定以下教学目标:1.认知目标:结合二次函数的图象,判断一元二次方程根的存在性及个数,从而了解函数的零点与方程的根的联系.理解并会用零点存在性定理.2.能力目标:培养学生观察、思考、分析、猜想、验证的能力,并从中体验从特殊到一般及函数与方程互相转化的重要思想.3.情感态度与价值观:在引导学生通过自主探究,发现问题,解决问题的过程中,激发学生学习热情和求知欲,体现学生的主体地位,提高学习数学的兴趣.三、重难点分析教学重点:判定函数零点的存在及其个数的方法。教学难点:探究发现函数零点的存在性,及利用函数的图像和性质判别函数零点的个数。四、教法分析和学法指导结合本节课的教学内容和学生的认知水平:在教法上,我借助多媒体和几何画板软件,采用“启发—探究—讨论”的教学模式。充分发挥教师的主导作用,引导、启发、充分调动学生学习的主动性,让学生真正成为教学活动的主体。在学法上,我体会到“授人以鱼,不如授人以渔” ,因此我以培养学生探究精神为出发点,着眼于知识的形成和发展,注重学生的学习体验,精心设置一个个问题链,并以此为主线,由浅入深、循序渐进,给不同层次的学生提供思考、创造、表现和成功的舞台。五、教学过程(一)创设问题情境,引入新课问题1求下列方程的根.(1);(2);(3).其中(3)是设问激疑.问题2观察下表,求出表中一元二次方程的实数根,画出相应的二次函数图象的简图,并写出函数图象与x轴交点的坐标.方程函数函数图象(简图)方程的实数根无实数根函数的图像与x轴的交点(-1,0),(3,0)(1,0)无交点 更一般地:方程f(x)=0的根,就是使函数y=f(x)的函数值为0的x值,从函数的角度我们称之为零点.(二)建构函数零点概念函数零点的概念:对于函数,我们把使的实数叫做函数的零点.思考:零点是一个点吗?结论:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标.即:指出有了上述的等价关系,我们就可用函数的观点看待方程,方程的根即函数的零点,可以把解方程的问题转化为思考函数图象与x轴的交点问题.方程转化为函数的思想,正是高中数学学习的重要思想.试一试:观察图象(1)此图象是否能表示函数?(2)你能从中分析函数有哪些零点吗?思考:任何函数都有零点吗?例1已知函数. (1)判断该函数零点的个数,并说明理由;(2)它在区间(2,3)和(-1,1)上存在零点吗?学生回答:可以求方程的根的个数或用判别式,从而确定零点的个数.产生分歧:求解方程后发现方程有两个不相等的实数根,那到底零点的个数是一个还是两个?教师指出:这里的两个根是不同的,利用我们得到的方程的根与函数零点之间关系的结论,原函数有两个零点.(三)探究发现零点存在性定理问题3观察下列两组画面,请你判断一下他的行程中是否一定趟过这条小溪?引申:若一个函数图像在区间[a,b]上是连续的,在什么情况下,图像在区间(a,b)内肯定与x轴有交点呢?发现零点存在性定理如果函数在区间上的图像是连续不断的一条曲线,并且有,那么,函数在区间内有零点,即存在使得这个c也就是方程的根.问题4:(1)若一个函数图像在[a,b]上连续,但,函数在区间(a,b)内有零点吗?你能举例说明吗?(2)若一个函数图像在[a,b]上连续,并且,能否确定函数f(x)在[a,b]内有几个零点?(3)若一个函数图像在[a,b]上连续,并且函数f(x)在[a,b]上有零点,是否一定有?(四)知识内化,演练反馈1、例题:例2试证明函数在区间(-2,-1)上有零点.证明: 又∵函数在区间(-2,-1)上的图象是连续的.∴函数在区间(-2,-1)上存在零点.例3求函数的零点的个数.法一:解:用计算机或计算器做出的对应值表(如课本),x123456789f(x)-4-1.3091.09863.38635.60947.79189.945912.07914.197由上表和右图可得,,即说明这个函数在区间(2,3)内有零点.由于函数在定义域内是增函数,所以它仅有一个零点.法二:解:由已知得,即求方程的根;方程变形为:令由图像可得两函数的图像只有一个公共点,所以函数只有一个零点.2、试一试:1、函数的零点所在的大致区间是()A.(1,2)B.(2,3)C.和(3,4)D.(五)小结:(1)函数零点的概念;(2)三个等价关系;(3)零点的求法;(4)零点存在性定理.(六)作业:教材P92习题3.1(A组)第2题.(七).附板书设计§3.1.1方程的根与函数的零点函数的零点:例2 零点存在性定理:例3布置作业

10000+的老师在这里下载备课资料