高中数学人教A版必修1 第三章 函数的应用 3.1.1 方程的根与函数的零点 教学案
加入VIP免费下载

高中数学人教A版必修1 第三章 函数的应用 3.1.1 方程的根与函数的零点 教学案

ID:1212602

大小:164.56 KB

页数:8页

时间:2022-08-11

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
《方程的根和函数的零点》一、教学内容分析 本节课选自普通高中课程标准实验教科书人教版必修一第三章第一节——第一课时方程的根与函数的零点,主要内容是函数零点的概念、函数零点与相应方程根的关系,函数零点的存在性定理,是一节概念课。函数是中学数学的核心概念,核心的原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链接点,它从不同的角度,将数与形,函数与方程邮寄的联系在一起,本节课是在学生学习了基本初等函数及其相关性质,具备初步数形结合的能力基础之上,利用函数图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法,为下节“用二分法求方程的近似解”和后续的学习垫底基础。因此本节课内容具有承前启后的作用,地位至关重要。二、教学目标1.知识与技能:结合二次函数的图象,判断一元二次方程根的存在性及个数,从而了解函数的零点与方程的根的联系.理解并会用零点存在性定理。2.过程与方法:培养学生观察、思考、分析、猜想,验证的能力,并从中体验从特殊到一般及函数与方程思想。3.情感态度与价值观:在引导学生通过自主探究,发现问题,解决问题的过程中,激发学生学习热情和求知欲,体现学生的主体地位,提高学习数学的兴趣。三、学习者特征分析本节课的授课对象是普通高中高一学生,学生已经学习了函数的概念,对初等函数的性质,图象已经有了比较系统的认识与理解,特别是对一元二次方程和二次函数在初中的学习已是一个重点,对这块内容已经有了很深的理解,所以对本节内容刚开始的引入起到了很好的铺垫作用,但针对高一学生,刚进入高中不久,学生的动手,动脑能力,以及观察、归纳能力都还没有很全面的基础,在本节课的学习上还是会遇到较多的困难,所以我在本节课的教学过程中,从学生已有的经验出发,环环紧扣提出问题引起学生对结论最求的愿望,将学生置于主动参与的地位。四、教学策略选择与设计以问题为载体,学生活动为主线,以多媒体辅助教学为手段利用探究式教学法,构建学生自主探究、合作交流的平台。 五、教学重点及难点重点:体会函数零点与方程根之间的联系,掌握零点的概念及零点存在性定理难点:探究并发现零点存在性定理及其应用六、教学过程教师活动学生活动设计意图目标解读理解函数(结合二次函数)零点的概念,领会函数零点与相应方程之间的关系,掌握零点存在的判定条件.知道本节课的主要要求 预习反馈问题1求下列方程的根(1)(2)(3)(4)问题2:作图(1)(2)(3)一元二次方程二次函数图象与x轴交点方程的根问题3:填写下表,探究一元二次方程的根与相应二次函数与x轴的交点的关系?问题4:完成表格,并观察一元二次方程的根与相应二函数图象与x轴交点的关系?方程的根函数的图像图象与x轴的交点结论:一元二次方程的根就是相应的二次函数图象与x轴交点的    .若一元二次方程无实数根,则相应的二次函数图象与x轴无交点. 以预习案的形式法系去提前做,让学生先做基础性的知识铺垫,对于掌握函数的零点有一定的意义 知识梳理函数零点概念(归纳总结)函数零点的概念:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点。【思考】:(1)零点是一个点吗?(2)怎样理解“零点”概念双向性呢?(3)请你说出问题2中3个函数的零点及个数?(4)反思:函数y=f(x)的零点、方程f(x)=0的实数根、函数y=f(x)的图象与x轴交点的横坐标,三者有什么关系?方程f(x)=0有实数根(2)函数y=f(x)有零点(3)函数y=f(x)的图象与x轴有交点零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c,使得f(c)=0.这个c也就是方程f(x)=0的根。【思考】(1)这个定理前提有几个条件?(2)“有零点”是指有几个零点呢?只有一个吗?(3)再加上什么条件就“有且仅有一个零点”呢?(4)若函数y=f(x)在区间(a,b)内有零点,一定能得出f(a)·f(b)

10000+的老师在这里下载备课资料