新人教A版必修2 高中数学 3.1.2 用二分法求方程的近似解 教学设计
加入VIP免费下载

新人教A版必修2 高中数学 3.1.2 用二分法求方程的近似解 教学设计

ID:1212893

大小:477 KB

页数:4页

时间:2022-08-11

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
3.1.2用二分法求方程的近似解教学设计富源六中范文波学习准备教师需要明了:1.新教材为什么增加求方程的近似解?2.为什么用“二分法”求方程的近似解?3.本节内容在教材中的地位和作用.4.明确学生现有的水平和可能的发展水平.学生需要复习:方程的根与函数的零点的相关知识.在此基础上,根据学生“最近发展区”确定本课时教学和学习目标.教学目标1.了解二分法是求方程近似解的一种方法.2.会用二分法求给定精确度的方程的近似解.3.在具体问题情境中感受逐步逼近的过程.4.培养学生观察、分析数据的能力.5.培养学生合作与交流的意识和对新知探求的精神.教学重点与难点重点:二分法原理及其探究过程,用二分法求方程的近似解.难点:对二分法原理的探究,对精确度、近似值的理解.教学方法与教学手段教学方法:“问题驱动”,启发、探究学法:自主探究、分组合作、辨析讨论、深化理解教辅工具:计算机、投影仪、计算器教学过程1.设置情境,提出问题问题1:你会求哪些类型方程的解?写一写你不会求解的方程.设计意图让学生感受有大量的方程不能求解,引起学生的认知冲突,激发学生的求知欲.问题2:能不能求方程的近似解?2.自主探究,获得新知以求方程x3+3x-1=0的近似解(精确度0.1)为例进行探究.探究1:怎样确定解所在的区间? (1)图象法(数形结合):(2)试值法:设f(x)=x3+3x-1,f(0)=-1<0,f(1)=3>0.复习:(1)方程的根与函数零点的关系;(2)根的存在性定理.探究2:怎样缩小解所在的区间?幸运52中猜商品价格环节,让学生思考:(1)主持人给出高了还是低了的提示有什么作用?(2)如何猜才能最快猜出商品的价格?设计意图在学生“最近发展区”设置问题,搭建平台,拉近数学与现实的距离,不仅激发学生学习兴趣,学生也在猜测的过程中逐步体会二分法思想.问题3:为什么要取中点,好处是什么?设计意图体会二分法优于其他如“三分法”,“四分法”,华罗庚的“优选法”等.探究3:区间缩小到什么程度满足要求?设计意图利用计算器进行了多次计算,逐步缩小实数解所在范围,精确度的确定就显得非常自然,突破了教学上的难点,提高了探究活动的有效性.问题4:精确度0.1指的是什么?与精确到0.1一样吗?通过对以上问题的探究,给出二分法的定义就水到渠成了.二分法的定义:对于在区间[a,b]上连续不断且满足f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.用二分法求零点近似值的步骤:给定精确度ε,用二分法求函数f(x)的零点近似值的步骤如下: (1)确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;(2)求区间(a,b)的中点c;(3)计算f(c);①若f(c)=0,则c就是函数的零点;②若f(a)·f(c)<0,则令b=c(此时零点x0∈(a,c));③若f(c)·f(b)<0,则令a=c(此时零点x0∈(c,b)).(4)判断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).3.例题剖析,巩固新知【例】借助计算器用二分法求方程lnx+2x-6=0的近似解(精确度0.01).两人一组,一人用计算器求值,一人记录结果;学生讲解缩小区间的方法和过程,教师点评.同时演示用Excel程序求方程的近似解.设计意图(1)演示Excel程序求方程的近似解,界画活泼,充分体现了信息技术与数学课程有机整合.进一步明确为什么用“二分法”求方程的近似解.(2)算法流程比较简洁,便于编写计算机程序,利用计算器和多媒体辅助教学,直观明了.4.知识迁移,生活应用(1)猜商品价格;(2)从上海到美国旧金山的海底电缆有15个接点,现在某接点发生故障,需及时修理,为了尽快断定故障发生点,一般至少需要检查接点的个数为__________.5.检验成果,巩固提升(1)下列函数的图象与x轴均有交点,其中不能用二分法求其零点的是()解吗?A.(0,1)B.(1,2)C.(2,3)D.(3,4)说明:二分法不仅能求方程的近似解,有时也能求方程的精确解.6.回顾反思本节课你学到了哪些知识?有哪些收获?还有什么疑问?(1)预设课堂生成问题(有些同学可能会有这样的疑惑,若没有就作为课下拓展留给学生思考).如图所示,区间[a,b]上有多个零点,还能否用二分法求方程的近似解?如果能,该怎 样做?(2)学生课堂生成新问题(不同的班级可能会有不同的问题,具体问题具体解决).课外作业1.书面作业(1)习题3.1A组3,4,5;(2)求2x+3x=7的近似解(精确度0.1).2.知识链接阅读与思考“中外历史上的方程求解”.板书设计课题:(投影显示)[来源:学|科|网]1.提出问题:2.自主探究:3.抽象概括:4.巩固练习:5.归纳总结:教学反思1.注重学生参与知识的形成过程;2.注重培养学生的应用意识;3.恰当地利用现代信息技术.

10000+的老师在这里下载备课资料