新人教A版必修1 高中数学 3.1.2 用二分法求方程的近似解 教案
加入VIP免费下载

新人教A版必修1 高中数学 3.1.2 用二分法求方程的近似解 教案

ID:1212958

大小:370.5 KB

页数:5页

时间:2022-08-11

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
人教版必修一精品教学资料起3.1.2用二分法求方程的近似解(教学设计)教学目标:知识与技能:通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.过程与方法:能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.情感、态度、价值观:体会数学逼近过程,感受精确与近似的相对统一.教学重点:重点通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.难点恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.一、复习回础,新课引入:高次多项式方程公式解的探索史料由于实际问题的需要,我们经常需要寻求函数的零点(即的根),对于为一次或二次函数,我们有熟知的公式解法(二次时,称为求根公式).在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却一直没有成功,到了十九世纪,根据阿贝尔(Abel)和伽罗瓦(Galois)的研究,人们认识到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当复杂,一般来讲并不适宜作具体计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中十分重要的课题.二、师生互动,新课讲解:1、二分法:上节(P88例1)课我们已经知道,函数在区间(2,3)内有零点,问题是:如何找出这个零点呢?如果能够把零点所在的区间范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.下面介绍一种求近似解的方法.我们知道,函数的图象与直角坐标系中轴交点的横坐标就是方程的解,利用上节课学过的函数零点存在的条件,我们用逐步逼近的方法,来求方程的近似解.(1)在区间(2,3)内,方程有解,取区间(2,3)中点2.5;(2)用计算器计算,因为,所以零点在区间内;(3)再取区间中点2.75,用计算器计算,因为,所以零点在区间内.(4)重复上面的过程,在有限次重复相同步骤后,零点所在区间长度在一定精度控制范围内,零点所在区间内的任意一点都可以作为函数零点的近似值,特别地,可以将区间端点作为零点的近似值.本例中,把取中点和判断零点的过程,用表格列出(课本第89页表3-2). 当精确度为0.01时,由于,所以,我们可将作为函数零点的近似值,也即方程根的近似值.对于在区间上连续不断且的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法(bisection).给定精确度,用二分法求函数零点近似值的步骤如下:1)确定区间,验证,给定精确度;2)求区间的中点;3)计算;4)判断:(1)若,则就是函数的零点;(2)若,则令(此时零点);(3)若,则令(此时零点).5)判断:区间长度是否达到精确度?即若,则得到零点近似值;否则重复2——5.说明:由函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解.由于都是重复性的工作,所以可以通过设计一定的计算程序,借助计算器或计算机完成计算.例1(课本P90例2)借助计算器或计算机用二分法求方程的近似解(精确到).小结:1)结论:图象在闭区间,上连续的单调函数,在,上至多有一个零点.2)函数零点的性质从“数”的角度看:即是使的实数;从“形”的角度看:即是函数的图象与轴交点的横坐标;若函数的图象在处与轴相切,则零点通常称为不变号零点;若函数的图象在处与轴相交,则零点通常称为变号零点.3)用二分法求函数的变号零点二分法的条件·表明用二分法求函数的近似零点都是指变号零点.变式训练1:求方程x2=2x+1的一个近似解(精确度0.1).解 设f(x)=x2-2x-1.∵f(2)=-10,∴在区间(2,3)内,方程x2-2x-1=0有一解,记为x0. 取2与3的平均数2.5,∵f(2.5)=0.25>0,∴2

10000+的老师在这里下载备课资料