课题:§3.1.2用二分法求方程的近似解教学目标:知识与技能通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.过程与方法能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.情感、态度、价值观体会数学逼近过程,感受精确与近似的相对统一.教学重点:重点通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.难点恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.教学程序与环节设计:创设情境组织探究探索发现尝试练习作业回馈课外活动由二分查找及高次多项式方程的求问题引入.二分法的意义、算法思想及方法步骤.体会函数零点的意义,明确二分法的适用范围.二分法的算法思想及方法步骤,初步应用二分法解决简单问题.二分法应用于实际.1.二分法为什么可以逼近零点的再分析;2.追寻阿贝尔和伽罗瓦.
教学过程与操作设计:环节教学内容设计师生双边互动创设情境材料一:二分查找(binary-search)(第六届全国青少年信息学(计算机)奥林匹克分区联赛提高组初赛试题第15题)某数列有1000个各不相同的单元,由低至高按序排列;现要对该数列进行二分法检索(binary-search),在最坏的情况下,需检索( )个单元。A.1000B.10 C.100 D.500二分法检索(二分查找或折半查找)演示.材料二:高次多项式方程公式解的探索史料由于实际问题的需要,我们经常需要寻求函数的零点(即的根),对于为一次或二次函数,我们有熟知的公式解法(二次时,称为求根公式).在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却一直没有成功,到了十九世纪,根据阿贝尔(Abel)和伽罗瓦(Galois)的研究,人们认识到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当复杂,一般来讲并不适宜作具体计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中十分重要的课题.师:从学生感兴趣的计算机编程问题,引导学生分析二分法的算法思想与方法,引入课题.生:体会二分查找的思想与方法.师:从高次代数方程的解的探索历程,引导学生认识引入二分法的意义.组织探究二分法及步骤:对于在区间,上连续不断,且满足·的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精度,用二分法求函数的零点近似值的步骤如下:1.确定区间,,验证·,给定精度;师:阐述二分法的逼近原理,引导学生理解二分法的算法思想,明确二分法求函数近似零点的具体步骤.分析条件“·”、“精度”、“区间中点”及“”的意义.
2.求区间,的中点;3.计算:环节呈现教学材料师生互动设计组织探究若=,则就是函数的零点;若·