3.1.2《用二分法求方程的近似解》导学案【学习目标】1.根据具体函数图象,能够借助计算器用二分法求相应方程的近似解;2.通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.【重点难点】重点:用二分法求解函数f(x)的零点近似值的步骤。难点:为何由︱a-b︳<便可判断零点的近似值为a(或b)?【知识链接】(预习教材P89~P91,找出疑惑之处)复习1:什么叫零点?零点的等价性?零点存在性定理?对于函数,我们把使的实数x叫做函数的零点.方程有实数根函数的图象与x轴函数.如果函数在区间上的图象是连续不断的一条曲线,并且有,那么,函数在区间内有零点.复习2:一元二次方程求根公式?三次方程?四次方程?【学习过程】※学习探究探究任务:二分法的思想及步骤问题:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好.解法:第一次,两端各放个球,低的那一端一定有重球;第二次,两端各放个球,低的那一端一定有重球;第三次,两端各放个球,如果平衡,剩下的就是重球,否则,低的就是重球.思考:以上的方法其实这就是一种二分法的思想,采用类似的方法,如何求的零点所在区间?如何找出这个零点?新知:对于在区间上连续不断且