3.1.2 用二分法求方程的近似解【选题明细表】知识点、方法题号二分法的概念1,2,3二分法的步骤4,5,6,11二分法求方程的近似解或函数零点7,8,9,101.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是( C )(A)x1(B)x2(C)x3(D)x4解析:观察图象可知,零点x3的附近两边的函数值都为负值,所以零点x3不能用二分法求.2.用二分法找函数f(x)=2x+3x-7在区间[0,4]上的零点近似值,取区间中点2,则下一个存在零点的区间为( B )(A)(0,1)(B)(0,2)(C)(2,3)(D)(2,4)解析:因为f(0)=20+0-7=-60,f(2)=22+6-7>0,所以f(0)f(2)0),在用二分法寻找零点的过程中,依次确定了零点所在的区间为(0,),(0,),(0,),则下列说法中正确的是( B )(A)函数f(x)在区间(0,)内一定有零点(B)函数f(x)在区间(0,)或(,)内有零点,或零点是(C)函数f(x)在(,a)内无零点(D)函数f(x)在区间(0,)或(,)内有零点4
解析:根据二分法原理,依次“二分”区间后,零点应存在于更小的区间,因此,零点应在(0,)或(,)中或f()=0.故选B.4.已知图象连续不断的函数y=f(x)在区间(0,0.1)上有唯一零点,如果用“二分法”求这个零点(精确度0.01)的近似值,则应将区间(0,0.1)等分的次数至少为( B )(A)3(B)4(C)5(D)6解析:由10,所以n的最小值为4.故选B.5.用二分法求方程x2-5=0在区间(2,3)内的近似解,经过 次二分后精确度能达到0.01. 解析:因为初始区间的长度为1,精确度要求是0.01,所以≤0.01,化为2n≥100,解得n≥7.答案:76.用二分法研究函数f(x)=x3+ln(x+)的零点时,第一次经计算f(0)0,可得其中一个零点x0∈ ,第二次应计算 . 解析:由于f(0)0,故f(x)在(0,)上存在零点,所以x0∈(0,),第二次计算应计算0和在数轴上对应的中点x1==.答案:(0,) f()7.(2018·安徽省江南名校高一联考)若函数f(x)的唯一零点同时在区间(0,15),(0,7),(0,4),(1,3)内,那么下列说法中正确的是( C )(A)函数f(x)在区间(1,2)内有零点(B)函数f(x)在区间(1,2)或(2,3)内有零点(C)函数f(x)在区间[3,15)内无零点(D)函数f(x)在区间(2,15)内无零点解析:根据二分法的实施步骤即可判断.故选C.8.下面是函数f(x)在区间[1,2]上的一些点的函数值.4
x11.251.3751.40651.4381.51.611.8752f(x)-2-0.9840.260-0.0520.1650.625-0.3154.356由此可判断:方程f(x)=0在[1,2]上解的个数( A )(A)至少5个(B)5个(C)至多5个(D)4个解析:由所给的函数值的表格可以看出,在x=1.25与x=1.375这两个数字对应的函数值的符号不同,即f(1.25)f(1.375)0,f(2)=-10,所以1.5