探究与发现牛顿法--用导数方法求方程的近似解
加入VIP免费下载

探究与发现牛顿法--用导数方法求方程的近似解

ID:1213496

大小:669.5 KB

页数:15页

时间:2022-08-11

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
§2.1椭圆及其标准方程 嫦娥卫星运行轨迹 教学目标1.目标①理解椭圆的定义。②掌握椭圆的标准方程,及字母间的关系和意义。③能根据已知条件求椭圆的标准方程,并初步体会数形结合的数学思想。2、重点难点①重点:掌握椭圆的标准方程。②难点:椭圆的标准方程的推导。 复习提问:1.圆的定义是什么?2.圆的标准方程是什么? 绘图纸上的三个问题1.视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3.绳长能小于两图钉之间的距离吗?导入新课: 归纳:椭圆的定义:平面内与两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫椭圆.定点F1、F2叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.探究:|MF1|+|MF2|>|F1F2||MF1|+|MF2|=|F1F2||MF1|+|MF2|<|F1F2|椭圆线段不存在 化简列式设点建系F1F2xy以F1、F2所在直线为x轴,线段F1F2的垂直平分线为y轴建立直角坐标系.P(x,y)设P(x,y)是椭圆上任意一点设F1F=2c,则有F1(-c,0)、F2(c,0)F1F2xyP(x,y)椭圆上的点满足PF1+PF2为定值,设为2a,则2a>2c则:设得即:OxyOF1F2Pb2x2+a2y2=a2b2探究:如何建立椭圆的方程? 方程特点(2)在椭圆两种标准方程中,总有a>b>0;(4)a、b、c都有特定的意义,a—椭圆上任意一点P到F1、F2距离和的一半;c—半焦距.有关系式成立。xOF1F2y2.椭圆的标准方程OF1F2yx(3)焦点在大分母变量所对应的那个轴上;(1)方程的左边是两项平方和的形式,等号的右边是1; 典例精析解:(1)所求椭圆标准方程为(2)所求椭圆标准方程为 例2求适合下列条件的椭圆的标准方程. (1)焦点在x轴上,且经过点(2,0)和点(0,1). (2)焦点在y轴上,与y轴的一个交点为P(0,-10),P到它较近的一个焦点的距离等于2.解:(1)所求椭圆的标准方程为(2)所求椭圆的标准方程是.求椭圆标准方程的解题步骤:(1)确定焦点的位置;(2)设出椭圆的标准方程;(3)用待定系数法确定a、b的值,写出椭圆的标准方程. 变式题组一 变式题组二 反思总结提高素质标准方程图形焦点坐标定义a、b、c的关系焦点位置的判定共同点不同点椭圆标准方程的求法:一定焦点位置;二设椭圆方程;三求a、b的值.F1(-c,0)、F2(c,0)F1(0,-c)、F2(0,c)平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.b2=a2–c2椭圆的两种标准方程中,总是a>b>0.所以哪个项的分母大,焦点就在那个轴上;反过来,焦点在哪个轴上,相应的那个项的分母就越大.xyoxyo 作业:一.人教版选修P421,2 再见

10000+的老师在这里下载备课资料