云南省德宏州芒市第一中学高中数学3.1.2第2课时二分法求方程的近似解教学设计新人教版必修1一、教学目标继续了解函数的零点与对应方程根的联系,理解在函数的零点两侧函数值乘积小于0这一结论的实质;通过探究、思考,培养学生理性思维能力以及分析问题、解决问题的能力。教学重点“在函数的零点两侧函数值乘积小于0”的理解.教学难点“在函数的零点两侧函数值乘积小于0”的理解.二、预习导学(一)创设情景,引入新课观察二次函数f(x)=x2-2x-3的图象(如下图),我们发现函数f(x)=x2-2x-3在区间[-2,1]上有零点.计算f(-2)与f(1)的乘积,你能发现这个乘积有什么特点?在区间[2,4]上是否也具有这种特点呢?我们能从二次函数的图象看到零点的性质:1.二次函数的图象是连续的,当它通过零点时(不是二重零点),函数值变号.2.相邻两个零点之间的所有函数值保持同号.(二)新知探究零点的性质如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.求方程f(x)=0的实数根,就是确定函数y=f(x)的零点.一般地,对于不能用公式法求根的方程f(x)=0来说,我们可以将它与函数y=f(x)联系起来,利用函数的性质找出零点,从而求出方程的根.
三、问题引领,知识探究探讨函数f(x)=lnx+2x-6的图象的零点所在区间四、例题讲解例1:已知函数f(x)=ax2+bx+1具有以下性质:①对任意实数x1≠x2,且f(x1)=f(x2)时,满足x1+x2=2;②对任意x1、x2∈(1,+∞),总有f()>.则方程ax2+bx+1=0根的情况是()A.无实数根B.有两个不等正根C.有两个异号实根D.有两个相等正根【例3】研究方程|x2-2x-3|=a(a≥0)的不同实根的个数.五、分层配餐基础训练1.定义在区间[-c,c]上的奇函数f(x)的图象如下图所示,令g(x)=af(x)+b,则下列关于函数g(x)的叙述正确的是A.若a<0,则函数g(x)的图象关于原点对称B.若a=-1,-2<b<0,则函数g(x)有大于2的零点C.若a≠0,b=2,则函数g(x)有两个零点
D.若a≥1,b<2,则函数g(x)有三个零点2.方程x2-2mx+m2-1=0的两根都在(-2,4)内,则实数m的取值范围为________.能力提升3.已知二次函数f(x)=x2+2(p-2)x+3p,若在区间[0,1]内至少存在一个实数c,使得f(c)>0,则实数p的取值范围是________.