3.2.1几类不同增长的函数模型
热点提示学习本节内容时,应充分利用计算器或计算机等工具作出一些特殊的指数函数、对数函数的图象,利用图象的形象直观得到这几类函数图象的增长规律,进而归纳总结出一般规律.熟练掌握这一规律后,还应注意灵活地运用它在实际问题中建立函数模型.
1.三种函数模型的性质函数性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增图象的变化随x增大逐渐上升随x增大逐渐上升随x增大逐渐上升
2.函数y=ax(a>1),y=logax(a>1)和y=xn(n>0)增长速度的对比:(1)对于指数函数y=ax(a>1)和幂函数y=xn(n>0),在区间(0,+∞)上,无论n比a大多少,尽管在x的一定范围内,ax会小于xn,但由于ax的增长快于xn的增长,因此总存在一个x0,当x>x0时,就会有ax>xn.(2)对于对数函数y=logax(a>1)和幂函数y=xn(n>0),在区间(0,+∞)上,尽管在x的一定范围内,logax可能会大于xn,但由于logax的增长慢于xn的增长,因此总存在一个x0,当x>x0时,就会有logax1),y=logax(a>1)和y=xn(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,总会存在一个x0,当x>x0时,就会有logax