3.2函数模型及其应用3.2.1几类不同增长的函数模型
【知识提炼】三种函数模型的性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性_____________________图象的变化趋势随x增大逐渐近似与____平行随x增大逐渐近似与____平行随n值而不同增函数增函数增函数y轴x轴
y=ax(a>1)y=logax(a>1)y=xn(n>0)增长速度①y=ax(a>1):随着x的增大,y增长速度_________,会远远大于y=xn(n>0)的增长速度,y=logax(a>1)的增长速度_________②存在一个x0,当x>x0时,有___________越来越快越来越慢ax>xn>logax
【即时小测】1.思考下列问题(1)在区间(0,+∞)上,当a>1,n>0时,是否总有logax0,x>x0时,logaxd时,f(x)>h(x)>g(x).
【方法技巧】常见的函数模型及增长特点(1)线性函数模型:线性函数模型y=kx+b(k>0)的增长特点是直线上升,其增长速度不变.(2)指数函数模型:能用指数型函数f(x)=abx+c(a,b,c为常数,a>0,b>1)表达的函数模型,其增长特点是随着自变量x的增大,函数值增长的速度越来越快,常称之为“指数爆炸”.
(3)对数函数模型:能用对数型函数f(x)=mlogax+n(m,n,a为常数,m>0,x>0,a>1)表达的函数模型,其增长的特点是开始阶段增长得较快,但随着x的逐渐增大,其函数值变化得越来越慢,常称之为“蜗牛式增长”.(4)幂函数模型:能用幂型函数f(x)=axα+b(a,b,α为常数,a≠0,α≠1)表达的函数模型,其增长情况由a和α的取值确定,常见的有二次函数模型和反比例函数模型.
【变式训练】有一组数据如下表:现准备用下列函数中的一个近似表示这些数据满足的规律,则其中最接近的一个是()A.v=log2tB.v=tC.v=D.v=2t-2t1.993.04.05.16.12v1.54.047.51218.01
【解析】选C.取t=1.99≈2,代入A,得v=log22=1≠1.5,代入B,得v==-1≠1.5,代入C,得v==1.5,代入D,得v=2×2-2≠1.5.经计算可知最接近的一个是选项C.
类型二指数函数、对数函数与幂函数模型的比较【典例】(2015·赤峰高一检测)函数f(x)=2x和g(x)=x3的图象如图所示.设两函数的图象交于点A(x1,y1),B(x2,y2),且x1g(1),f(2)