第三章 函数的应用§3.2函数模型及其应用2014.11.11§3.2.1几类不同增长的函数模型1
材料:澳大利亚兔子数“爆炸”在教科书第三章的章头图中,有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.2
例1.假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?3
探究:1)在本例中涉及哪些数量关系?如何用函数描述这些数量关系?2)分析解答(略)3)根据例1表格中所提供的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?4)你能借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点吗?5)根据以上分析,你认为应如何作出选择?4
例2.某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增加而增加,但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:, ,.问:其中哪个模型能符合公司的要求?5
探究:1)本例涉及了哪几类函数模型?本例的实质是什么?2)你能根据问题中的数据,判定所给的奖励模型是否符合公司要求吗?3)通过对三个函数模型增长差异的比较,写出例2的解答.6
幂函数、指数函数、对数函数的增长差异分析:你能否仿照前面例题使用的方法,探索研究幂函、指数函数、对数函数在区间上的增长差异,并进行交流、讨论、概括总结,形成较为准确、详尽的结论性报告.7
尝试练习:教材P98练习1、2;教材P101练习.8
小结与反思:通过实例和计算机作图体会、认识直线上升、指数爆炸、对数增长等不同函数模型的增长的含义,认识数学的价值,认识数学与现实生活、与其他学科的密切联系,从而体会数学的实用价值,享受数学的应用美.9
书面作业教材P107习题3.2(A组)第4、6题,(B组)第1题.10
课外活动收集一些社会生活中普遍使用的递增的一次函数、指数函数、对数函数的实例,对它们的增长速度进行比较,了解函数模型的广泛应用;有时同一个实际问题可以建立多个函数模型.具体应用函数模型时,你认为应该怎样选用合理的函数模型?11