新人教A版必修1 高中数学 3.2.1 几类不同增长的函数模型 说课稿
加入VIP免费下载

新人教A版必修1 高中数学 3.2.1 几类不同增长的函数模型 说课稿

ID:1213715

大小:167.41 KB

页数:3页

时间:2022-08-12

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
3.2.1《几类不同增长的函数模型》说课稿各位评委老师大家好,我是第xx号考生xx,今天我要说课的内容是人教A版必修一第三章第二节的第一小节《几类不同增长的函数模型》,本次说课包括五部分:说教材、说教法、说学法、说教学程序和说板书。一、说教材1、教材分析:本节是高中数学必修1(人教A版)第三章《函数的应用》的起始课.该课将经历运用和选择函数模型解决实际问题的过程,从而认识在同为增函数的函数模型中,各种函数存在增长的差异;理解直线上升、指数爆炸、对数增长的含义;认识研究函数增长(衰减)差异的方法;感受数学建模的思想。因此从内容上看,本节课是对前面所学习的几种基本初等函数以及函数的性质的综合应用,从思想方法上讲,是对研究函数的方法的进一步巩固和深化,同时,也在为后面继续学习各种不同的函数模型的应用举例奠定基础,.因此本节内容,既是第二章基本初等函数知识的延续,又是函数模型应用学习的基础,起着承前启后的作用.2、教材目标:根据新课标标准要求以及学生现有的认知结构,我确定本节课的教学目标如下:①知识与技能目标:在掌握好函数基本性质的前提下,使学生探求函数在实际中的应用,并学会利用函数知识建立数学模型解决实际问题②过程与方法目标:经历“类比——归纳——应用”的过程,培养学生分析问题探究问题的能力,感悟由具体到抽象的研究方法,培养学生的归纳概括能力③情感态度与价值观目标:培养学生自主探究,合作交流的能力,激发学生的学习兴趣并培养学生严谨的科学态度3、教学重点、难点教学重点:将实际问题转化为数学模型,在比较常数函数、一次函数、指数函数、对数函数模型增长差异的过程中,体会直线上升、指数爆炸、对数增长等不同类型函数增长的含义.教学难点:如何结合实际问题让学生体会不同函数模型的增长差异,以及如何利用这种增长差异来解决一些实际问题.二、说教法1.学情分析在能力上,学生在前面已学过函数概念、指数函数、对数函数、幂函数,但由于指数函数、对数函数和幂函数的增长变化复杂,这就使得学生在研究过程中可能遇到困难。在情感方面,多数学生对教学新内容的学习,有相当的学习兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不均衡,仍需要教师创设民主和谐平等的课堂气氛,加以调动。2.方法选择新课程倡导在教学过程中,教师应成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程,本着这样的教学理念和所要完成的本节课的教学目标,我采用了如下的教学方法:在教学中,要注重展开探索过程,充分利用好函数图象的直观性、发挥多媒体教学的优势。本节课主要采用问答式教学法、探究式教学法进行教学,教师在课堂中只起着主导作用,让学生在教师的提问中自觉的发现新知,探究新知,并且加入激励性的语言以提高学生的积极性,提高学生参与知识形成的全过程,从而达到学习目标。三、说学法现代教学,学生是教学活动的主题,他们在学习过程中的参与状态和参与度是影响教学效果最重要的因素。因此在学法上要重视:1、动手操作,自主探索。让学生利用图形直观的性质,观察图像,合作探究,并通过正、反例的构造,来完成从感性认识到理 性思维的质的飞跃.2、要让学生从问题中质疑、尝试、归纳、总结,培养学生发现问题、研究问题和分析解决问题的能力.在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。四、说教学过程本课堂的教学设计力求依照“以学生的发展为本”,“培养学生的创新精神和实践能力”的新课程理念,遵循学生的认知规律,体现循序渐进和因材施教的教学原则,我将从以下几个环节进行教学1.创设情境,引入课题1.介绍第三章章头图,提出问题.问题1:澳大利亚的兔子为什么能在短短的几十年中由5只发展到5亿只?澳大利亚兔子的急剧增长反映了自然界中一种增长现象:指数增长.问题2:在生活中,你还能举出其它增长的例子吗?2.在学生回答问题的基础上引出各种不同类型的函数增长模型.3.揭示课题:几类不同增长的函数模型.【设计意图】运用章头图,形成问题情境,产生应用函数的需要,激发学生的学习愿望.2.分析问题,建立模型(一)提出问题例1.假如你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.请问:你会选择哪种投资方式?(二)分析问题1.引导审题,抓住关键词“回报”问题3:你选择的是什么样的回报?怎样比较回报资金的大小?从解决问题的角度看:(1)比较三种方案的每日回报;(2)比较三种方案在若干天内的累计回报.2.引导分析数量关系,建立函数模型。仅从日回报的角度引导学生根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式.【设计意图】引发学生思考,经历建立函数基本模型的过程.【备注】累计回报的本质是数列求和问题,由于学生目前的知识储备还不够,现在仅限于通过对函数模型通过列表计算、图象观察来作出判断和选择.3.组织探究,感性体验1.教师提出问题问题4:你会选择哪种投资方案?请用数学语言呈现你的理由.2.学生分组操作,比较不同增长从解决问题的方式上:(1)用列表方法来比较;(2)画出函数图象来分析.【设计意图】保成学生合作探究、动手实践,能借助计算器,利用数据表格、函数图象对三种模型进行比较、分析,初步感受直线上升和指数爆炸的意义,初步体验研究函数增长差异的方法. 4.成果交流,阶段小结(一)学生交流让学生交流小组探究的成果(表格、图象、结论)(二)师生互动1.阅读教材上例题解答中的数据表格与图象(突出散点图),引导学生关注增长量,感受增长差异.2.通过教师多媒体动态演示,让学生进一步体会增长差异.在不同的函数模型下,虽然都有增长,但增长态势各具特点.他们的增长不在同一个“档次”上,当自变量变得很大时,指数型函数比一次函数增长的速度要快得多.(三)归纳小结1.通过教师的小结,增强学生对增长差异的认识.常数函数(没有增长),直线上升(匀速增长),指数爆炸(急剧增长).2.上述问题的解决,是通过考虑其中的数量关系,把它抽象概括成一个函数问题,用解析式、数据表格、图象这三种函数的表达形式来研究的.【设计意图】分享学生成果,达到生生互动、师生互动;借助多媒体展示,帮助学生理解不同增长的函数模型的增长差异,并且初步体验数学建模的基本思想,认识函数问题的研究方法.5.归纳总结,提炼升华问题10:通过本节课的学习,你有哪些收获?请你从知识、方法、思想方面作一个小结.1.知识:对函数的性质有了进一步的了解,我们体会到同是增长型函数,但其增长差异却很大:常数函数(没有增长);一次函数(直线上升);指数函数(爆炸增长);对数函数(平缓增长).2.方法:函数有三种表示方法(解析法、列表法、图象法);函数问题的一般研究方法(观察—归纳—猜想—证明)3.思想:两个例题都体现了数学建模的思想,即把实际问题数学化:面对实际问题,我们要读懂问题,运用所学知识,将其转化成数学模型,最终得到实际问题的解.【设计意图】理解几类不同增长的函数模型的增长差异,提炼数学思想方法,认识数学的应用价值.6.分层作业,学以致用:作业分为必做题、选做题、思考题设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步达到不同的人在数学上得到不同的发展。五.说板书在教学中我把黑板分为三部分,把知识要点写在左侧,中间是课本例题演练,右侧是实例应用。以上是我对《集合的含义与表示》这节教材的认识和对教学过程的设计。谢谢各位老师

10000+的老师在这里下载备课资料