湖南省邵阳市隆回县第二中学高中数学3.2.1几类不同增长的函数模型2教案新人教A版必修1教学目标1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;2.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;3.恰当运用函数的三种表示法(解析式、图象、列表)并借助信息技术解决一些实际问题.自主学习(阅读教材P98~P101,找出疑惑之处)旧知:三个变量随自变量的变化情况如下表:1357911y15135625171536456633y2529245218919685y356.16.616.957.207.40其中呈对数型函数变化的变量是________,呈指数型函数变化的变量是________,呈幂函数型变化的变量是________.合作探究探究任务:幂、指、对函数的增长差异问题:幂函数、指数函数、对数函数在区间上的单调性如何?增长有差异吗?实验:函数,,,试计算:12345678y1y2y3011.5822.322.582.813由表中的数据,你能得到什么结论?思考:大小关系是如何的?增长差异?结论:在区间上,尽管,和都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,随着x的增大,的增长速度越来越快,会超过并远远大于的增长速度.而的增长速度则越来越慢.因此,总会存在一个,当时,就有.
典型例题分析例1某工厂今年1月、2月、3月生产某种产品的数量分别为1万件,1.2万件,1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据用一个函数模拟该产品的月产量与月份的关系,模拟函数可以选用二次函数或函数.已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.A级:必做题1.某工厂签订了供货合同后组织工人生产某货物,生产了一段时间后,由于订货商想再多订一些,但供货时间不变,该工厂便组织工人加班生产,能反映该工厂生产的货物数量y与时间x的函数图象大致是().2.下列函数中随增大而增大速度最快的是().A.B.C.D.3.根据三个函数给出以下命题:(1)在其定义域上都是增函数;(2)的增长速度始终不变;(3)的增长速度越来越快;(4)的增长速度越来越快;(5)的增长速度越来越慢。其中正确的命题个数为().A.2B.3C.4D.5B级:选做题1.某商店出售茶壶和茶杯,茶壶每个定价20元,茶杯每个定价为5元,该店推出两种优惠办法:(1)买一个茶壶赠送一个茶杯;(2)按总价的92%付款.某顾客需购茶壶4个,茶杯若干(不少于4个),若需茶杯个,付款数为y(元),试分别建立两种优惠办法中y与的函数关系,并讨论顾客选择哪种优惠方法更合算.2.某厂生产中所需一些配件可以外购,也可以自己生产,如外购,每个价格是1.10元;如果自己生产,则每月的固定成本将增加800元,并且生产每个配件的材料和劳力需0.60元,则决定此配件外购或自产的转折点是____件(即生产多少件以上自产合算)三、总结提升直线上升、指数爆炸、对数增长等不同函数模型的增长的含义.