3.2.1几类不同增长的函数模型第三章§3.2函数模型及其应用
学习目标1.尝试将实际问题转化为函数模型.2.了解指数函数、对数函数及幂函数等函数模型的增长差异.3.会根据函数的增长差异选择函数模型.
题型探究问题导学内容索引当堂训练
问题导学
思考知识点一 函数模型自由落体速度公式v=gt是一种函数模型.类比这个公式的发现过程,说说什么是函数模型?它怎么来的?有什么用?答案答案函数模型来源于现实(伽利略斜塔抛球),通过收集数据(打点计时器测量),画散点图分析数据(增长速度、单位时间内的增长量等),寻找或选择函数(假说)来拟合,这个函数即为函数模型.函数模型通常用来解释已有数据和预测.
梳理一般地,设自变量为x,函数为y,并用x表示各相关量,然后根据问题的已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为数学问题,实现问题的数学化,即所谓建立数学模型.
知识点二 三种常见函数模型的增长差异比较三种函数模型的性质,填写下表.函数性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性_____________________图象的变化随x的增大逐渐变“陡”随x的增大逐渐趋于稳定随n值而不同增长速度ax的增长xn的增长,xn的增长logax的增长增长后果总会存在一个x0,当x>x0时,就有___________增函数快于增函数增函数快于ax>xn>logax
题型探究
例1(1)下列函数中,随x的增大,增长速度最快的是A.y=50xB.y=x50C.y=50xD.y=log50x(x∈N*)类型一 几类函数模型的增长差异答案解析解析四个函数中,增长速度由慢到快依次是y=log50x,y=50x,y=x50,y=50x.
解析在同一平面直角坐标系内作出y1=2x,y2=x2的图象(图略).易知在区间(0,+∞)上,当x∈(0,2)时,2x>x2,即此时y>0;当x∈(2,4)时,2x<x2,即y<0;当x∈(4,+∞)时,2x>x2,即y>0;当x=-1时,y=2-1-1<0.据此可知只有选项A中的图象符合条件.(2)函数y=2x-x2的大致图象为答案解析
在区间(0,+∞)上,尽管函数y=ax(a>1),y=logax(a>1)和y=xn(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,随着x的增大,y=ax(a>1)的增长速度越来越快,会超过并远远大于y=xn(n>0)的增长速度,而y=logax(a>1)的增长速度则会越来越慢.因此,总会存在一个x0,当x>x0时,就有logax<xn<ax.反思与感悟
解析f(x)为偶函数,排除A、B.当x>1时,y=lg|x|=lgx>0,且增长速度小于y=x2,答案解析
解析四个函数中,A的增长速度不变,B、C增长速度越来越快,其中C增长速度比B更快,D增长速度越来越慢,故只有D能反映y与x的关系.命题角度1选择函数模型例2某大型超市为了满足顾客对商品的购物需求,对超市的商品种类做了一定的调整,结果调整初期利润增长迅速,随着时间的推移,增长速度越来越慢,如果建立恰当的函数模型来反映该超市调整后利润y与售出商品的数量x的关系,则可选用A.一次函数B.二次函数C.指数型函数D.对数型函数类型二 函数模型应用答案解析
根据实际问题提供的两个变量的数量关系可构建和选择正确的函数模型.同时,要注意利用函数图象的直观性来确定适合题意的函数模型.反思与感悟
跟踪训练2某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年的年产量保持不变,将该厂6年来这种产品的总产量C与时间t(年)的函数关系用图象表示,则正确的是答案
解按甲,每年利息100×10%=10,5年后本息合计150万元;按乙,第一年本息合计100×1.09,第二年本息合计100×1.092,…,5年后本息合计100×1.095≈153.86(万元).故按乙方案投资5年可多得利3.86万元,乙方案投资更有利.命题角度2用函数模型决策例3某公司预投资100万元,有两种投资可供选择:甲方案年利率10%,按单利计算,5年后收回本金和利息;乙方案年利率9%,按每年复利一次计算,5年后收回本金和利息.哪种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元)解答
建立函数模型是为了预测和决策,预测准不准主要靠建立的函数模型与实际的拟合程度.而要获得好的拟合度,就需要丰富、详实的数据.反思与感悟
跟踪训练3一家庭(父亲、母亲和孩子们)去某地旅游,甲旅行社说:“如果父亲买全票一张,其余人可享受半票优惠.”乙旅行社说:“家庭旅行为集体票,按原价优惠.”这两家旅行社的原价是一样的.试就家庭里不同的孩子数,分别建立表达式,计算两家旅行社的收费,并讨论哪家旅行社更优惠.解设家庭中孩子数为x(x≥1,x∈N*),旅游收费为y,旅游原价为a.解答∴当x=1时,两家旅行社收费相等.当x>1时,甲旅行社更优惠.
当堂训练
1.下列函数中随x的增长而增长最快的是A.y=exB.y=lnxC.y=x100D.y=2x√答案23451
2.能使不等式log2x