模块必修一第三单元第3.2.1节几种不同增长的函数模型教学案课时:第一课时课型:编者:日期:年月日三维目标1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;2.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;3.恰当运用函数的三种表示法(解析式、图象、列表)并借助信息技术解决一些实际问题.自主性学习1、旧知识铺垫(1)一次函数(2)二次函数(3)指数函数(4)对数函数2、新知识学习预习教材P95~P98,找出疑惑之处回答下列问题:例1中①在本例中涉及哪些数量关系?如何用函数描述这些数量关系?②根据此例的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点.例2中①此例涉及了哪几类函数模型?本例实质如何?②根据问题中的数据,如何判定所给的奖励模型是否符合公司要求?
3、我的疑难问题:重难点解析例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?例2某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增加而增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:;;.问:其中哪个模型能符合公司的要求?
习题设计基础巩固性习题1、某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……,现有2个这样的细胞,分裂x次后得到的细胞个数y为().A.B.y=2C.y=2D.y=2x2、某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用().A.一次函数B.二次函数
C.指数型函数D.对数型函数3、一等腰三角形的周长是20,底边长y是关于腰长x的函数,它的解析式为().A.y=20-2x(x≤10)B.y=20-2x(x