不同增长型模型 - 副本
加入VIP免费下载

不同增长型模型 - 副本

ID:1214323

大小:1.11 MB

页数:19页

时间:2022-08-12

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
例假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:回报的累积值方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。请问,你会选择哪种投资方案呢?1.考虑回报量,除了要考虑每天的回报量之外,还得考虑什么?想一想:方案一:每天回报40元;我来说 想一想:2.本题中涉及哪些数量关系?如何利用函数描述这些数量关系?我来说设第x天所得回报是y元,则方案一可用函数y=40(x∈N*)进行描述;方案二可以用函数y=10x(x∈N*)进行描述;方案三可以用函数进行描述。想一想:3.怎样去研究这三个函数,才能找到最佳的方案呢?要对三个方案作出选择,就要对它们的增长情况进行分析,用计算器计算出三种方案所得回报的增长情况,列表如下:我来说 x/天方案一方案二方案三y/元增加量/元y/元增加量/元y/元增加量/元140100.4240200.8340301.6440403.2540506.46406012.87407025.68408051.294090102.4…………3040300214748364.8000000000…01010101010101010…100.40.81.63.26.412.825.651.2…107374182.4 我想问根据所列的表格中提供的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?我来说方案一每天的回报不变;方案二、三每天的回报都在增加,且方案三随x的增加每天的回报越来越大,比方案二要大得多。我想问作出三个方案的图象看看?图112-1 我想问根据以上分析,你认为该作出何种选择?从问题1可知,考虑回报量,除了要考虑每天的回报量之外,还得考虑回报的累积值.你能把前11天回报的累积值算出来吗?累计回报表天数方案1234567891011一4080120160200240280320360400440二103060100150210280360450550660三0.41.22.8612.425.250.8102204.4409.2818.8我想问 投资1--6天,应选择第一种投资方案;投资7天,应选择第一或第二种投资方案;投资8--10天,应选择第二种投资方案;投资11天(含11天)以上,应选择第三种投资方案。 解决实际问题的步骤:实际问题读懂问题抽象概括数学问题演算推理数学问题的解还原说明实际问题的解 练习第98页第1题,第2题 实际问题读懂问题将问题抽象化数学模型解决问题基础过程关键目的几种常见函数的增长情况:常数函数一次函数指数函数没有增长直线上升指数爆炸 例2、某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随着销售利润x(单位:万元)的增加而增加,但奖金数不超过5万元,同时奖金不超过利润的25%。现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司的要求呢?我想问本题中涉及了哪几类函数模型?实质是什么?本例涉及了一次函数、对数函数、指数函数三类函数模型,实质是比较三个函数的增长情况。我来说 我再问怎样才能判断所给的奖励模型是否符合公司的要求呢?我来说要对每一个奖励模型的奖金总额是否超出5万元,以及奖励比例是否超过25%进行分析,才能做出正确选择。解:借助计算机作出三个函数的图象如下: 对于模型y=0.25x,它在区间[10,1000]上递增,当x∈(20,1000)时,y>5,因此该模型不符合要求。对于模型,由函数图象,并利用计算器,可知在区间(805,806)内有一个点满足,由于它在[10,1000]上递增,因此当时,y>5,因此该模型也不符合要求。对于模型,它在区间[10,1000]上递增,而且当x=1000时,,所以它符合奖金总数不超过5万元的要求。再计算按模型奖励时,奖金是否不超过利润的25%,即当x∈[10,1000]时,是否有成立。 令,x∈[10,1000],利用计算机作出函数f(x)的图象由图可知它是减函数,因此f(x)

10000+的老师在这里下载备课资料