一、选择题1.函数y1=2x与y2=x2,当x>0时,图象的交点个数是( )A.0 B.1C.2D.3[答案] C2.下列函数中,随x的增大,增长速度最快的是( )A.y=50(x∈Z)B.y=1000xC.y=0.4·2x-1D.y=·ex[答案] D3.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个,……现有2个这样的细胞,分裂x次后得到的细胞个数y为( )A.y=2x+1 B.y=2x-1C.y=2xD.y=2x[答案] A[解析] y=2×2x=2x+1.4.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用( )A.一次函数B.二次函数C.指数型函数D.对数型函数5.如果寄信时的收费方式如下:每封信不超过20g付邮费0.80元,超过20g而不超过40g付邮费1.60元,依此类推,每增加20g需增加邮0.80元(信的质量在100g以内).某人所寄一封信的质量为
72.5g,那么他应付邮费( )A.3.20元B.2.90元C.2.80元D.2.40元6.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=x2+2x+20(单位:万元).已知1万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为( )A.36万件B.18万件C.22万件D.9万件7.在某种金属材料的耐高温实验中,温度y(℃)随着时间t(分)变化的情况由计算机记录后显示的图象如图所示:现给出下列说法:( )①前5分钟温度增加越来越快;②前5分钟温度增加越来越慢;③5分钟后温度保持匀速增加;④5分钟后温度保持不变.A.①④B.②④C.②③D.①③8.已知某食品厂生产100g饼干的总费用为1.80元,现该食品厂对饼干采用两种包装,其包装费及售价如表所示:
型号小包装大包装质量100g300g包装费0.5元0.8元售价3.00元8.40元下列说法中,正确的是( )①买小包装实惠 ②买大包装实惠 ③卖3包小包装比卖1包大包装盈利多 ④卖1包大包装比卖3包小包装盈利多.A.①④B.①③C.②③D.②④二、填空题9.现测得(x,y)的两组对应值分别为(1,2),(2,5),现有两个待选模型,甲:y=x2+1,乙:y=3x-1,若又测得(x,y)的一组对应值为(3,10.2),则应选用________作为函数模型.10.某食品加工厂生产总值的月平均增长率为p,则年平均增长率为________.[答案] (1+p)12-111.以下是三个变量y1,y2,y3随变量x变化的函数值表:x12345678…y1248163264128256…y21491625364964…y3011.58522.3222.5852.8073…其中,关于x呈指数函数变化的函数是________.12.若a>1,n>0,那么当x足够大时,ax,xn,logax的大小关系是________________.三、解答题
13.甲、乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到如下两图.甲调查表明:每个鱼池平均产量直线上升,从第1年1万条鳗鱼上升到第6年2万条.乙调查表明:全县鱼池总个数直线下降,由第1年30个减少到第6个10个.请你根据提供的信息说明:(1)第2年全县鱼池的个数及全县出产的鳗鱼总数;(2)哪一年的规模(即总产量)最大?说明理由.14.试比较函数y=x200,y=ex,y=lgx的增长差异.15.某学校为了实现100万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且奖金y随生源利润x的增加而增加,但奖金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y=0.2x,y=log5x,y=1.02x,其中哪个模型符合该校的要求?[解析] 借助工具作出函数y=3,y=0.2x,y=log5x,y=1.02x的图象(图略).观察图象可知,在区间[5,100]上,y=0.2x,y=1.02x的图象都有一部分在直线y=3的上方,只有y=log5x的图象始终在y=3和y=0.2x的下方,这说明只有按模型y=log5x进行奖励才符合学校的要求.
16.函数f(x)=1.1x,g(x)=lnx+1,h(x)=x的图象如下图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,e,a,b,c,d为分界点).[解析] 由指数爆炸、对数增长、幂函数增长的差异可得曲线C1对应的函数是f(x)=1.1x,曲线C2对应的函数是h(x)=x,曲线C3对应的函数是g(x)=lnx+1.由题图知,当xh(x)>g(x);当1h(x);当eh(x);当af(x);当bf(x);当cg(x);当x>d时,f(x)>h(x)>g(x).