新人教A版必修1 高中数学 3.2.1 几类不同增长的函数模型 练习题
加入VIP免费下载

新人教A版必修1 高中数学 3.2.1 几类不同增长的函数模型 练习题

ID:1214334

大小:172 KB

页数:4页

时间:2022-08-12

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2014年高中数学3.2.1几类不同增长的函数模型同步测试(含解析,含尖子生题库)新人教A版必修1(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.用长度为24m的材料围成一矩形场地,并且中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为(  )A.3mB.4mC.5mD.6m解析: 设隔墙的长为xm,矩形面积为S,则S=x·=x(12-2x)=-2x2+12x=-2(x-3)2+18,所以当x=3时,S有最大值为18.答案: A2.某种细菌在培养过程中,每15min分裂一次(由1个分裂成2个),这种细菌由1个分裂成4096个需经过(  )A.12hB.4hC.3hD.2h解析: 设需经过x次分裂,则4096=2x,解得x=12,所以所需时间t==3(h).故选C.答案: C3.三个变量y1,y2,y3,随着变量x的变化情况如下表:x1357911y15135625171536456655y2529245218919685177149y356.106.616.9857.27.4则关于x分别呈对数函数、指数函数、幂函数变化的变量依次为(  )A.y1,y2,y3B.y2,y1,y3C.y3,y2,y1D.y1,y3,y2解析: 通过指数函数、对数函数、幂函数等不同函数模型的增长规律比较可知,对数函数的增长速度越来越慢,变量y3随x的变化符合此规律;指数函数的增长速度成倍增长,y2随x的变化符合此规律;幂函数的增长速度介于指数函数与对数函数之间,y1随x的变化符合此规律,故选C.答案: C4.如图所示是一份统计图表,根据此图表得到的以下说法中,正确的是(  )(1)这几年人民生活水平逐年得到提高;(2)人民生活费收入增长最快的一年是2009年;(3)生活费价格指数上涨速度最快的一年是2010年;(4)虽然2011年生活费收入增长是缓慢的,但由于生活费价格指数也略有降低,因而人民生活有较大的改善.4 A.1项B.2项C.3项D.4项解析: 由题意,“生活费收入指数”减去“生活费价格指数”的差是逐年增大的,故(1)正确;“生活费收入指数”在2009~2010年最陡,故(2)正确;“生活费价格指数”在2010~2011年最平缓,故(3)不正确;由于“生活费价格指数”略呈下降,而“生活费收入指数”曲线呈上升趋势,故(4)正确,故选C.答案: C二、填空题(每小题5分,共10分)5.生产某机器的总成本y(万元)与产量x(台)之间的函数关系式是y=x2-75x,若每台机器售价为25万元,则该厂获利润最大时应生产的机器台数为________台.解析: 设该厂获利润为g(x),则g(x)=25x-y=25x-(x2-75x)=-x2+100x=-(x-50)2+2500,当x=50时,g(x)有最大值2500万元.答案: 506.如图所示,折线是某电信局规定打长途电话所需要付的电话费y(元)与通话时间t(分钟)之间的函数关系图象,根据图象填空:(1)通话2分钟,需付电话费________元;(2)通话5分钟,需付电话费________元;(3)如果t≥3,则电话费y(元)与通话时间t(分钟)之间的函数关系式为____________.解析: (1)由图象可知,当t≤3时,电话费都是3.6元.(2)由图象可知,当t=5时,y=6,需付电话费6元.(3)当t≥3时,y关于t的图象是一条直线,且经过(3,3.6)和(5,6)两点,故设函数关系式为y=kt+b,则解得故y关于t的函数关系式为y=1.2t(t≥3).答案: (1)3.6 (2)6 (3)y=1.2t(t≥3)三、解答题(每小题10分,共20分)7.某工厂生产某种产品,每件产品的出厂价为50元,其成本为25元,因为在生产过程中,平均每生产一件产品有0.5立方米污水排出,为了净化环境,所以工厂设计两个方案进行污水处理,并准备实施.方案1:工厂污水先净化后再排出,每处理1立方米污水所耗原料费2元,并且每月排污设备损耗费为30000元;方案2:工厂污水排到污水处理厂统一处理,每处理1立方米污水需付14元排污费.(1)若工厂每月生产3000件产品,你作为厂长在不污染环境,又节约资金的前提下,应选择哪个处理污水的方案,请通过计算加以说明;(2)若工厂每月生产6000件时,你作为厂长又该如何决策呢?解析: 设工厂生产x件产品时,依方案1的利润为y1,依方案2的利润为y2,则y1=(50-25)x-2×0.5x-30000=24x-30000,y2=(50-25)x-14×0.5x=18x.(1)当x=3000时,y1=42000,y2=54000.∵y1y2,故应选择第2个方案处理污水.8.一块形状为直角三角形的铁皮,直角边长分别为40cm与60cm,现将它剪成一个矩形,并以此三角形的直角为矩形的一个角.问:怎样剪,才能使剩下的残料最少?解析: 如图,剪出的矩形为CDEF,设CD=xcm,CF=ycm,则AF=(40-y)cm.∵△AFE∽△ACB,∴=,即=.∴y=40-x.剩下的残料面积为S=×60×40-x·y=x2-40x+1200=(x-30)2+600.∵0

10000+的老师在这里下载备课资料