2019-2020年高中数学课时跟踪检测二十一几类不同增长的函数模型新人教A版必修1.在一次数学试验中,采集到如下一组数据:x-2.0-1.001.002.003.00y0.240.5112.023.988.02则x,y的函数关系与下列哪类函数最接近?(其中a,b为待定系数)( )A.y=a+bx B.y=a+bxC.y=ax2+bD.y=a+解析:选B 在坐标系中描出各点,知模拟函数为y=a+bx.2.下列函数中,随着x的增大,增长速度最快的是( )A.y=50 B.y=1000xC.y=0.4·2x-1D.y=ex解析:选D 指数函数y=ax,在a>1时呈爆炸式增长,而且a越大,增长速度越快,选D.3.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用( )A.一次函数 B.二次函数C.指数型函数D.对数型函数解析:选D 由于一次函数、二次函数、指数函数的增长不会后来增长越来越慢,只有对数函数的增长符合.4.有一组实验数据如下表所示:x12345y1.55.913.424.137下列所给函数模型较适合的是( )A.y=logax(a>1)B.y=ax+b(a>1)C.y=ax2+b(a>0)D.y=logax+b(a>1)解析:选C 通过所给数据可知y随x增大,其增长速度越来越快,而A、D中的函数增长速度越来越慢,而B中的函数增长速度保持不变,故选C.5.y1=2x,y2=x2,y3=log2x,当2<x<4时,有( )A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y2>y3>y1解析:选B 在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2=x2,y1=2x,y3=log2x,故y2>y1>y3.
6.小明xx年用7200元买一台笔记本.电子技术的飞速发展,笔记本成本不断降低,每过一年笔记本的价格降低三分之一.三年后小明这台笔记本还值________元.解析:三年后的价格为7200×××=元.答案:7.函数y=x2与函数y=xlnx在区间(1,+∞)上增长较快的一个是________.解析:当x变大时,x比lnx增长要快,∴x2要比xlnx增长的要快.答案:y=x28.已知某工厂生产某种产品的月产量y与月份x满足关系y=a·(0.5)x+b,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件.则此厂3月份该产品的产量为________万件.解析:∵y=a·(0.5)x+b,且当x=1时,y=1,当x=2时,y=1.5,则有解得∴y=-2×(0.5)x+2.当x=3时,y=-2×0.125+2=1.75(万件).答案:1.759.画出函数f(x)=与函数g(x)=x2-2的图象,并比较两者在[0,+∞)上的大小关系.解:函数f(x)与g(x)的图象如图所示.根据图象易得:当0≤x<4时,f(x)>g(x);当x=4时,f(x)=g(x);当x>4时,f(x)<g(x).10.燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v=5log2,单位是m/s,其中Q表示燕子的耗氧量.(1)求燕子静止时的耗氧量是多少个单位;(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?解:(1)由题知,当燕子静止时,它的速度v=0,代入题中所给公式可得:0=5log2,解得Q=10.
即燕子静止时的耗氧量是10个单位.(2)将耗氧量Q=80代入题给公式得:v=5log2=5log28=15(m/s).即当一只燕子的耗氧量是80个单位时,它的飞行速度为15m/s.层级二 应试能力达标1.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为( )解析:选D 设该林区的森林原有蓄积量为a,由题意可得ax=a(1+0.104)y,故y=log1.104x(x≥1),函数为对数函数,所以函数y=f(x)的图象大致为D中图象,故选D.2.三个变量y1,y2,y3,随着变量x的变化情况如下表:x1357911y15135625171536456655y2529245218919685177149y356.106.616.9857.27.4则关于x分别呈对数函数、指数函数、幂函数变化的变量依次为( )A.y1,y2,y3 B.y2,y1,y3C.y3,y2,y1D.y1,y3,y2解析:选C 通过指数函数、对数函数、幂函数等不同函数模型的增长规律比较可知,对数函数的增长速度越来越慢,变量y3随x的变化符合此规律;指数函数的增长速度成倍增长,y2随x的变化符合此规律;幂函数的增长速度介于指数函数与对数函数之间,y1随x的变化符合此规律,故选C.3.四人赛跑,假设他们跑过的路程fi(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是( )A.f1(x)=x2B.f2(x)=4xC.f3(x)=log2xD.f4(x)=2x解析:选D 显然四个函数中,指数函数是增长最快的,故最终跑在最前面的人具有的函数关系是f4(x)=2x,故选D.
4.以下四种说法中,正确的是( )A.幂函数增长的速度比一次函数增长的速度快B.对任意的x>0,xn>logaxC.对任意的x>0,ax>logaxD.不一定存在x0,当x>x0时,总有ax>xn>logax解析:选D 对于A,幂函数与一次函数的增长速度受幂指数及一次项系数的影响,幂指数与一次项系数不确定,增长幅度不能比较;对于B、C,当0<a<1时,显然不成立.当a>1,n>0时,一定存在x0,使得当x>x0时,总有ax>xn>logax,但若去掉限制条件“a>1,n>0”,则结论不成立.5.以下是三个变量y1,y2,y3随变量x变化的函数值表:x12345678…y1248163264128256…y21491625364964…y3011.58522.3222.5852.8073…其中,关于x呈指数函数变化的函数是________.解析:从表格可以看出,三个变量y1,y2,y3都是越来越大,但是增长速度不同,其中变量y1的增长速度最快,画出它们的图象(图略),可知变量y1呈指数函数变化,故填y1.答案:y16.生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在下图中请选择与容器相匹配的图象,A对应______;B对应_____;C对应______;D对应______.解析:A容器下粗上细,水高度的变化先慢后快,故与(4)对应;B容器为球形,水高度变化为快—慢—快,应与(1)对应;C,D容器都是柱形的,水高度的变化速度都应是直线型,但C容器细,D容器粗,故水高度的变化为:C容器快,与(3)对应,D容器慢,与(2)对应.答案:(4) (1) (3) (2)
7.函数f(x)=1.1x,g(x)=lnx+1,h(x)=x的图象如图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,a,b,c,d,e为分界点).解:由指数爆炸、对数增长、幂函数增长的差异可得曲线C1对应的函数是f(x)=1.1x,曲线C2对应的函数是h(x)=x,曲线C3对应的函数是g(x)=lnx+1.由题图知,当xh(x)>g(x);当1h(x);当eh(x);当af(x);当bf(x);当cg(x);当x>d时,f(x)>h(x)>g(x).8.某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58.为了预测以后各月的患病人数,甲选择了模型y=ax2+bx+c,乙选择了模型y=p·qx+r,其中y为患病人数,x为月份数,a,b,c,p,q,r都是常数.结果4月,5月,6月份的患病人数分别为66,82,115,你认为谁选择的模型较好?解:依题意,得即解得所以甲:y1=x2-x+52,又②-①,得p·q2-p·q1=2, ④③-②,得p·q3-p·q2=4, ⑤⑤÷④,得q=2.将q=2代入④式,得p=1.将q=2,p=1代入①式,得r=50,所以乙:y2=2x+50.计算当x=4时,y1=64,y2=66;当x=5时,y1=72,y2=82;当x=6时,y1=82,y2=114.可见,乙选择的模型较好.