2019人教A版数学必修一3.2.2《函数模型的应用实例》导学案姓名:_____________班级:___________组别:___________组名:____________【学习目标】1.学会运用一次函数、二次函数模型解决一些实际问题,提升解决简单的实际应用问题的能力。2.理解实际应用问题的求解过程,体验指数函数模型、拟合函数模型的题型特征,学会运用函数知识解决实际问题.【重点难点】1.教学重点:运用一次函数、二次函数模型解决一些实际问题.2.教学难点:将实际问题转变为数学模型.【阅读内容】大约在一千五百年前,大数学家孙子在《孙子算经》中记载了这样的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只有几只鸡和兔?你知道孙子是如何解答这个“鸡兔同笼”问题的吗?你有什么更好的方法?孙子的大胆解法:他假设砍去每只鸡和兔一半的脚,则每只鸡和兔就变成了“独脚鸡”和“双脚兔”.这样,“独脚鸡”和“双脚兔”脚的数量与它们头的数量之差,就是兔子数,即:47-35=12;鸡数就是:35-12=23。知识探究(二):二次函数模型的应用例2某农家旅游公司有客房300间,每间日房租20元,每天都客满.公司欲提高档次,并提高租金.如果每间客房每日增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?
知识探究(三):分段函数模型的应用某市一种出租车标价为1.20元/km,但事实上的收费标准如下:最开始4km内不管车行驶路程多少,均收费10元(即起步费),4km后到15km之间,每公里收费1.20元,15km后每公里再加收50%,即每公里1.80元.试写出付费总数f与打车路程x之间的函数关系.知识探究(四):指数型函数模型的应用已知1650年世界人口为5亿,当时人口的年增长率为0.3%;1970年世界人口为36亿,当时人口的年增长率为2.1%.(1)用马尔萨斯人口模型计算,什么时候世界人口是1650年的2倍?什么时候世界人口是1970年的2倍?(2)实际上,1850年以前世界人口就超过了10亿;而2003年世界人口还没有达到72亿.你对同样的模型得出的两个结果有何看法?【基础达标】A1.客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h的速度匀速行驶1小时到达丙地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过的路程s与时间t之间关系的图象中,正确的是()A.B.C.D.
A2.一种商品连续两次降价10%后,欲通过两次连续提价恢复原价,则每次应提价()A.10%B.20%C.5%D.11.1%B3.今有一组实验数据如下:1.993.04.05.16.121.54.047.51218.01现准备用下列函数中一个近似地表示这些数据满足的规律,其中最接近的一个是()A.B.C.D.B4.假设某商品靠广告销售的收入R与广告费A之间满足关系R=·,那么广告效应为,当A=时,取得最大广告效应.C5.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为2个)经过3小时后,这种细菌可由1个分裂成__________个C6.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两用户该月用水量分别为5x,3x吨.(1)求y关于x的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.D7.某个经营者把开始六个月试销A、B两种商品的逐月投资与所获纯利润列成下表:投资A种商品金额(万元)123456获纯利润(万元)0.651.391.8521.841.40投资B种商品金额(万元)123456获纯利润(万元)0.250.490.7611.261.51该经营者准备下月投入12万元经营这两种产品,但不知投入A、B两种商品各多少才最合算.请你帮助制定一个资金投入方案,使得该经营者获得最大的利润,并按你的方案求出该经营者下月可获得的最大纯利润(结果保留两位有效数字).
【课后反思】本节课我最大的收获是我还存在的疑惑是我对导学案的建议是