湖南省邵阳市隆回县第二中学高中数学3.2.2函数模型的应用实例2教案新人教A版必修1教学目标1.通过一些实例,来感受一次函数、二次函数、指数函数、对数函数以及幂函数的广泛应用,体会解决实际问题中建立函数模型的过程,从而进一步加深对这些函数的理解与应用;2.初步了解对统计数据表的分析与处理.自主学习(阅读教材P104~P106,找出疑惑之处)阅读:2003年5月8日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目,马知恩教授率领一批专家昼夜攻关,于5月19日初步完成了第一批成果,并制成了要供决策部门参考的应用软件.这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真,结果指出,将患者及时隔离对于抗击非典至关重要、分析报告说,就全国而论,菲非典病人延迟隔离1天,就医人数将增加1000人左右,推迟两天约增加工能力100人左右;若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若4月21日以后,政府示采取隔离措施,则高峰期病人人数将达60万人.这项研究在充分考虑传染病控制中心每日工资发布的数据,建立了非典流行趋势预测动力学模型和优化控制模型,并对非典未来的流行趋势做了分析预测.典型例题分析例1某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元.销售单价与日均销售量的关系如下表所示:销售单价/元6789101112日均销售量/桶480440400360320280240请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?变式题:某农家旅游公司有客房300间,每间日房租为20元,每天都客满.公司欲提高档次,并提高租金,如果每间客房日增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?小结:找出实际问题中涉及的函数变量→根据变量间的关系建立函数模型→利用模型解决实际问题→小结:二次函数模型。目标检测A级:必做题1.向高为H的圆锥形漏斗内注入化学溶液(漏斗下口暂且关闭),注入溶液量V与溶液深度h的大概图象是().
2.某种生物增长的数量与时间的关系如下表:123...138...下面函数关系式中,能表达这种关系的是().A.B.C.D.3.某企业近几年的年产值如下图:则年增长率(增长率=增长值/原产值)最高的是().A.97年B.98年C.99年D.00年B级:选做题1.某地新建一个服装厂,从今年7月份开始投产,并且前4个月的产量分别为1万件、1 .2万件、1.3万件、1.37万件.由于产品质量好,服装款式新颖,因此前几个月的产品销售情况良好.为了在推销产品时,接收定单不至于过多或过少,需要估测以后几个月的产量,你能解决这一问题吗?2.有一批影碟(VCD)原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下方法促销:买一台单价为780元,买两台单价都为760元,依次类推,每多买一台则所买各台单价均再减少20元,但每台售价不能低于440元;乙商场一律都按原价的75%销售.某单位需购买一批此类影碟机,问去哪家商场购买花费较低?总结提升1.有关统计图表的数据分析处理;2.实际问题中建立函数模型的过程;