高中数学人教A版必修1 第三章 函数的应用 3.2.2 函数模型的应用实例 导学案
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
3.2.2函数模型的应用实例第一课时应用已知函数模型解决实际问题课前预习学案一.预习目标:熟悉几种常见的函数增长型二.预习内容:阅读课本内容思考:主要的函数增长性有哪些三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容      课内探究学案一.学习目标:能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.学习重点:运用一次函数、二次函数模型解决一些实际问题.学习难点:将实际问题转变为数学模型.二.学习过程解决实际问题的步骤1)首先建立直角坐标系,画出散点图;2)根据散点图设想比较接近的可能的函数模型:一次函数模型:二次函数模型:幂函数模型:指数函数模型:(>0,)利用待定系数法求出各解析式,并对各模型进行分析评价,选出合适的函数模型;由于尝试的过程计算量较多,可同桌两个同学分工合作,最后再一起讨论确定.例1某农家旅游公司有客房300间,每间日房租为20元,每天都客满.公司欲提高档次,并提高租金,如果每间客房日增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高? 变式:某列火车众北京西站开往石家庄,全程277km,火车出发10min开出13km后,以120km/h匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系式,并求火车离开北京2h内行驶的路程.例2要建一个容积为8m3,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,试求应当怎样设计,才能使水池总造价最低?并求此最低造价.变式:某工厂今年1月、2月、3月生产某种产品的数量分别为1万件,1.2万件,1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据用一个函数模拟该产品的月产量与月份的关系,模拟函数可以选用二次函数或函数.已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.课后练习与提高一.选择题 1.客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h的速度匀速行驶1小时到达丙地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过的路程s与时间t之间关系的图象中,正确的是()A.B.C.D.2.一种商品连续两次降价10%后,欲通过两次连续提价恢复原价,则每次应提价()A.10%B.20%C.5%D.11.1%3.今有一组实验数据如下:1.993.04.05.16.121.54.047.51218.01现准备用下列函数中一个近似地表示这些数据满足的规律,其中最接近的一个是()A.B.C.D.二.填空题4.假设某商品靠广告销售的收入R与广告费A之间满足关系R=·,那么广告效应为,当A=时,取得最大广告效应.5.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为2个)经过3小时后,这种细菌可由1个分裂成__________个三.解答题6.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两用户该月用水量分别为5x,3x吨.(1)求y关于x的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.参考答案

10000+的老师在这里下载备课资料