函数模型的应用实例训练
加入VIP免费下载

函数模型的应用实例训练

ID:1214664

大小:103.5 KB

页数:7页

时间:2022-08-12

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
3.2.2 函数模型的应用实例一、基础达标1.某同学家门前有一笔直公路直通长城,星期天,他骑自行车匀速前往,他先前进了akm,觉得有点累,就休息了一段时间,想想路途遥远,有些泄气,就沿原路返回骑了bkm(b<a),当他记起诗句“不到长城非好汉”,便调转车头继续前进,则该同学离起点的距离与时间的函数关系图象大致为(  )答案 C解析 由题意可知,s是关于时间t的一次函数,所以其图象特征是直线上升.由于中间休息了一段时间,该段时间的图象应是平行于横轴的一条线段.然后原路返回,图象下降,再调转车头继续前进,则直线一致上升.2.国内快递1000g以内的包裹的邮资标准如下表:运送距离x(km)0<x≤500500<x≤10001000<x≤1500…邮资y(元)5.006.007.00…如果某人在西安要快递800g的包裹到距西安1200km的某地,那么他应付的邮资是(  )A.5.00元B.6.00元C.7.00元D.8.00元答案 C解析 由题意可知,当x=1200时,y=7.00元.3.某机器总成本y(万元)与产量x(台)之间的函数关系式是y=x2-75x,若每台机器售价为25万元,则该厂获利润最大时应生产的机器台数为(  )A.30B.40C.50D.60答案 C 解析 设安排生产x台,则获得利润f(x)=25x-y=-x2+100x=-(x-50)2+2500.故当x=50台时,获利润最大.4.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=(A,c为常数).已知工人组装第4件产品用时30min,组装第A件产品用时15min,那么c和A的值分别是(  )A.75,25B.75,16C.60,25D.60,16答案 D解析 由题意知,组装第A件产品所需时间为=15,故组装第4件产品所需时间为=30,解得c=60.将c=60代入=15,得A=16.5.某工厂生产某产品x吨所需费用为P元,而卖出x吨的价格为每吨Q元,已知P=1000+5x+x2,Q=a+,若生产出的产品能全部卖出,且当产量为150吨时利润最大,此时每吨的价格为40元,则有(  )A.a=45,b=-30B.a=30,b=-45C.a=-30,b=45D.a=-45,b=-30答案 A解析 设生产x吨产品全部卖出,获利润为y元,则y=xQ-P=x-=x2+(a-5)x-1000(x>0).由题意知,当x=150时,y取最大值,此时Q=40.∴解得6.已测得(x,y)的两组值为(1,2),(2,5),现有两个拟合模型,甲:y=x2+1,乙:y=3x-1.若又测得(x,y )的一组对应值为(3,10.2),则选用________作为拟合模型较好.答案 甲解析 对于甲:x=3时,y=32+1=10,对于乙:x=3时,y=8,因此用甲作为拟合模型较好.7.武汉市的一家报摊主从报社买进《武汉晚报》的价格是每份0.40元,卖出的价格是每份0.50元,卖不掉的报纸还可以以每份0.08元的价格退回报社.在一个月(以30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,他应该每天从报社买进多少份,才能使每月所获得的利润最大?并计算他一个月最多可赚得多少元?解 设报摊主每天买进报纸x份,每月利润为y元(x为正整数).当x≤250时,y=0.1×30×x=3x.当250≤x≤400时,y=0.1×20×x+0.1×10×250-(x-250)×0.32×10=2x+250-3.2x+800=1050-1.2x.当x≥400时,y=0.1×20×400+0.1×10×250-(x-400)×0.32×20-(x-250)×0.32×10=800+250-6.4x+2560-3.2x+800=-9.6x+4410.当x≤250时,取x=250,ymax=3×250=750(元).当250≤x≤400时,取x=250,ymax=750(元).当x≥400时,取x=400,ymax=570(元).故他应该每天从报社买进250份报纸,才能使每月所获得的利润最大,最大值为750元.二、能力提升8.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a,经过t天后体积V与天数t的关系式为:V=a·e-kt.已知新丸经过50天后,体积变为a.若一个新丸体积变为a,则需经过的天数为(  )A.125B.100 C.75D.50答案 C解析 由已知,得a=a·e-50k,∴e-k=.设经过t1天后,一个新丸体积变为a,则a=a·e-kt1,∴=(e-k)t1=,∴=,t1=75.9.“学习曲线”可以用来描述学习某一任务的速度,假设函数t=-144lg中,t表示达到某一英文打字水平所需的学习时间,N表示每分钟打出的字数.则当N=40时,t=________(已知lg2≈0.301,lg3≈0.477).答案 36.72解析 当N=40时,则t=-144lg=-144lg=-144(lg5-2lg3)=36.72.10.如图所示,某池塘中浮萍蔓延的面积y(m2)与时间t(月)的关系y=at,有以下几种说法:①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30m2; ③浮萍从4m2蔓延到12m2需要经过1.5个月;④浮萍每月增加的面积都相等.其中正确的命题序号是________.答案 ①②解析 由图象知,t=2时,y=4,∴a2=4,故a=2,①正确.当t=5时,y=25=32>30,②正确,当y=4时,由4=2t1知t1=2,当y=12时,由12=2t2知t2=log212=2+log23.t2-t1=log23≠1.5,故③错误;浮萍每月增长的面积不相等,实际上增长速度越来越快,④错误.11.在对口扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型残疾人企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3600元后,逐步偿还转让费(不计息).根据甲提供的资料有:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如下图所示;③每月需各种开支2000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额.(2)企业乙只依靠该店,最早可望在几年后脱贫?解 设该店月利润余额为L,则由题设得:L=Q(P-14)×100-3600-2000.①由销量图易得:Q=代入①式得L= (1)当14≤P≤20时,Lmax=450(元),此时P=19.5(元);当20<P≤26时,Lmax=(元),此时P=(元).故当P=19.5(元)时,月利润余额最大,为450元.(2)设可在n年后脱贫,依题意有12n×450-50000-58000≥0,解得n≥20.即最早可望在20年后脱贫.三、探究与创新12.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T0,经过一定时间t后的温度是T,则T-Ta=(T0-Ta)·,其中Ta表示环境温度,h称为半衰期.现有一杯用88℃热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降温到40℃需要20min,那么降温到35℃时,需要多少时间?解 由题意知40-24=(88-24)·,即=.解之,得h=10.故T-24=(88-24)·.当T=35时,代入上式,得35-24=(88-24)·,即=.两边取对数,用计算器求得t≈25.因此,约需要25min,可降温到35℃.13.(2014·成都高一期末) 今年冬季,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究,发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量P(单位:mg/L)与过滤时间t(单位:小时)间的关系为P(t)=P0e-kt(P0,k均为非零常数,e为自然对数的底数),其中P0为t=0时的污染物数量.若经过5小时过滤后还剩余90%的污染物.(1)求常数k的值;(2)试计算污染物减少到40%至少需要多少时间(精确到1小时,参考数据:ln0.2≈-1.61,ln0.3≈-1.20,ln0.4≈-0.92,ln0.5≈-0.69,ln0.9≈-0.11.)解 (1)由已知,当t=0时,P=P0;当t=5时,P=90%P0.于是有90%P0=P0e-5t.解得k=-ln0.9(或0.022).(2)由(1)得,知P=P0et.当P=40%P0时,有0.4P0=P0et.解得t=≈=≈41.82.故污染物减少到40%至少需要42小时.

10000+的老师在这里下载备课资料