3.2.2 函数模型的应用实例学习目标 1.能利用已知函数模型求解实际问题.2.能自建确定性函数模型解决实际问题.3.了解建立拟合函数模型的步骤,并了解检验和调整的必要性.知识点一 几类已知函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)反比例函数模型f(x)=+b(k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数型函数模型f(x)=bax+c(a,b,c为常数,b≠0,a>0且a≠1)对数型函数模型f(x)=blogax+c(a,b,c为常数,b≠0,a>0且a≠1)幂函数型模型f(x)=axn+b(a,b为常数,a≠0)知识点二 应用函数模型解决问题的基本过程用函数模型解应用题的四个步骤(1)审题——弄清题意,分清条件和结论,理顺数量关系,初步选择模型;(2)建模——将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识建立相应的数学模型;(3)求模——求解数学模型,得出数学模型;(4)还原——将数学结论还原为实际问题.1.实际问题中两个变量之间一定有确定的函数关系.( × )2.用来拟合散点图的函数图象一定要经过所有散点.( × )3.函数模型中,要求定义域只需使函数式有意义.( × )4.用函数模型预测的结果和实际结果必须相等,否则函数模型就无存在意义了.( × )类型一 利用已知函数模型求解实际问题
例1 某列火车从北京西站开往石家庄,全程277km.火车出发10min开出13km后,以120km/h的速度匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系,并求火车离开北京2h内行驶的路程.考点 函数模型的应用题点 一次、二次函数模型的应用解 因为火车匀速运动的时间为(277-13)÷120=(h),所以0≤t≤.因为火车匀速行驶th所行驶的路程为120tkm,所以,火车运行总路程S与匀速行驶时间t之间的关系是S=13+120t.2h内火车行驶的路程S=13+120×=233(km).反思与感悟 在实际问题中,有很多问题的两变量之间的关系是已知函数模型,这时可借助待定系数法求出函数解析式,再根据解题需要研究函数性质.跟踪训练1 如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.则水位下降1米后,水面宽________米.考点 函数模型的应用题点 一次、二次函数模型的应用答案 2解析 以拱顶为原点,过原点与水面平行的直线为x轴,建立平面直角坐标系(如图),则水面和拱桥交点A(2,-2),设抛物线所对应的函数关系式为y=ax2(a≠0),则-2=a·22,∴a=-,∴y=-x2.当水面下降1米时,水面和拱桥的交点记作B(b,-3),将B点的坐标代入到y=-x2中,得b=±,因此水面宽2米.类型二 自建确定性函数模型解决实际问题例2 某住宅小区为了营造一个优雅、舒适的生活环境,打算建造一个八边形的休闲花园,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成面积为200米2的十字形区域,且计划在正方形MNPK上建一座花坛,其造价为4200元/米2,在四个相同的矩形上(图中的阴影部分)铺花岗岩路面,其造价为210元/米2
,并在四个三角形空地上铺草坪,其造价为80元/米2.(1)设AD的长为x米,试写出总造价Q(单位:元)关于x的函数解析式;(2)问:当x取何值时,总造价最少?求出这个最小值.考点 函数模型的综合应用题点 函数模型中的最值问题解 (1)设AM=y,AD=x,则x2+4xy=200,∴y=.故Q=4200x2+210×4xy+80×2y2=38000+4000x2+(0