§3.2.2函数模型的应用实例(1)学习目标1.通过一些实例,来感受一次函数、二次函数、指数函数、对数函数以及幂函数的广泛应用,体会解决实际问题中建立函数模型的过程,从而进一步加深对这些函数的理解与应用;2.了解分段函数、指数函数、对数函数等函数模型的应用.学习过程一、课前准备(预习教材P101~P104,找出疑惑之处)复习1:某列火车众北京西站开往石家庄,全程253km,火车出发10min开出13km后,以120km/h匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系式,并求火车离开北京2h内行驶的路程.复习2:一辆汽车在某段路程中的行驶速度v与时间t的关系如图所示,则该汽车在前3小时内行驶的路程为_________km,假设这辆汽车的里程表在汽车行驶这段路程前的读数为2006km,那么在时,汽车里程表读数S与时间t的函数解析式为__________.二、新课导学※典型例题例1一辆汽车在某段路程中的行驶速度与时间的关系如右图:(1)求图中阴影部分的面积,并说明所求面积的实际意义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立汽车行驶这段路程时汽车里程表读数S和时间t的函数解析式.变式:某客运公司定客票的方法是:如果行程不超过,票价是元/,如果超过,则超过的部分按元/定价.则客运票价元与行程公里之间的函数关系是.
小结:分段函数是生产生活中常用的函数模型,与生活息息相关,解答的关键是分段处理、分类讨论.例2人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(1766-1834)就提出了自然状态下的人口增长模型:,其中t表示经过的时间,表示时的人口数,r表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料:(单位:万人)年份19501951195219531954人数5519656300574825879660266年份19551956195719581959人数61456628286456365994672071)若以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;2)如果按表中的增长趋势,大约在哪一年我国的人口将达到13亿?小结:人口增长率平均值的计算;指数型函数模型.※动手试试练1.某书店对学生实行促销优惠购书活动,规定一次所购书的定价总额:①如不超过20元,则不予优惠;②如超过20元但不超过50元,则按实价给予9折优惠;③如超过50元,其中少于50元包括50元的部分按②给予优惠,超过50元的部分给予8折优惠.(1)试求一次购书的实际付款y元与所购书的定价总额x元的函数关系;(2)现在一学生两次去购书,分别付款16.8元和42.3元,若他一次购买同样的书,则应付款多少?比原来分两次购书优惠多少?
练2.在中国轻纺城批发市场,季节性服装当季节即将来临时,价格呈上升趋势.设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的平稳销售;10周后当季节即将过去时,平均每周降价2元,直到16周末,该服装已不再销售.(1)试建立价格P与周次t之间的函数关系;(2)若此服装每件进价Q与周次t之间的关系式为,试问该服装第几周每件销售利润最大?三、总结提升※学习小结1.分段函数模型;2.人口增长指数型函数模型;※知识拓展英国物理学家和数学家牛顿(IssacNewton,1643-1727年)曾提出物体在常温环境下温度变化的冷却模型:,其中t表示经过的时间,表示物体的初始温度,表示环境稳定,k为正的常数.学习评价※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.按复利计算,若存入银行5万元,年利率2%,3年后支取,则可得利息(单位:万元)为().A.5(1+0.02)B.5(1+0.02)C.5(1+0.02)-5C.5(1+0.02)-52.x克a%盐水中,加入y克b%的盐水,浓度变为c%,则x与y的函数关系式为().A.y=xB.y=xC.y=xD.y=x3.A、B两家电器公司在今年1—5月份的销售量如下图所示,
则B相对于A其市场份额比例比较大的月份是().A.2月B.3月C.4月D.5月4.拟定从甲地到乙地通话m分钟的电话费由f(m)=1.06(0.5×[m]+1)元给出,其中m>0,[m]是大于或等于m的最小整数(职[3]=3,[3.7]=4),则从甲地到乙地通话时间为5.5分钟的话费为元.5.已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过年后的剩留量为,则的函数解析式为.课后作业经市场调查,某商品在过去100天内的销售量和价格均为时间()的函数,且销售量近似地满足(,);前40天价格为(,),后40天的价格为(,),试写出该种商品的日销售额S与时间的函数关系.