2022年高中数学第三章函数的应用3.2.2函数模型的应用实例 课件 新人教A版必修1
加入VIP免费下载

2022年高中数学第三章函数的应用3.2.2函数模型的应用实例 课件 新人教A版必修1

ID:1214762

大小:634 KB

页数:15页

时间:2022-08-12

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
3.2.2函数模型的应用实例 引入1.我们所学过的函数有那些?2.你能分别说出有关这些函数的解析式、函数图象以及性质吗?一次函数、二次函数、指数函数、对数函数以及幂函数共5种函数.3.你能分别说说这些函数在实际生活中的应用吗? 1.下图中哪几个图像与下述三件事分别吻合得最好?请你为剩下的那个图像写出一件事。①我离开家不久,发现自己把作业忘在家里,于是返回家里找到作业再上学②我骑车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间③我出发后,心情轻松,缓慢行进,后来为了赶时间开始加速ABC0离家距离时间0离家距离时间0时间离家距离离家距离0时间D(D)(A)(B) 解:(1)阴影部分的面积为阴影部分的面积表示汽车在这5小时内行驶的路程为360km.例3一辆汽车在某段路程中的行驶速度与时间的关系如图所示:(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立汽车行驶这段路程时汽车里程表读数skm与时间th的函数解析式,并作出相应的图象.908070605040302010vt12345 解:908070605040302010vt12345(2)根据图形可得:图像为: 例4人口问题是当今世界各国普遍关心的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:y=y0ert其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料:年份1950195119521953195419551956195719581959人数/万人55196563005748258796602666145662828645636599467207(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;(2)如果按上表的增长趋势,大约在哪一年我国的人口达到13亿? 例4人口问题是当今世界各国普遍关心的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:y=y0ert其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料:年份1950195119521953195419551956195719581959人数/万人55196563005748258796602666145662828645636599467207解:设1950~1959年的人口增长率分别为r1,r1,…r9.经计算得我国人口在这几年得平均增长率为:r=(r1+r1+…r9)÷9≈0.0221.令y0=55196,则我国在1950~1959年期间的人口增长模型为: 根据表中数据作出散点图.年份1950195119521953195419551956195719581959人数/万人55196563005748258796602666145662828645636599467207 根据表中数据作出散点图.年份1950195119521953195419551956195719581959人数/万人55196563005748258796602666145662828645636599467207并作出函数的图象. 解:(2)将y=130000带入由计算器可得:t≈38.76.例4人口问题是当今世界各国普遍关心的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:y=y0ert其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料:年份1950195119521953195419551956195719581959人数/万人55196563005748258796602666145662828645636599467207(2)如果按上表的增长趋势,大约在哪一年我国的人口达到13亿? 练习某商场为了庆祝开业10周年,对某种商品进行打折促销活动.在30天内该商品日交易均价P(元)与时间t(天)组成有序数对(t,P),且点(t,P)落在图中的两条线段上.该商品在30天内(含30天)的日交易量Q(万件)与时间t(天)的部分数据如下表所示:第t天4101622Q(万件)36302418 (1)写出该商品日交易均价P(元)与时间t(天)所满足的函数关系式;(2)根据表中数据确定日交易量Q(万件)与时间t(天)的一次函数关系式;(3)求这30天中第几天的日交易额最大,最大值为多少万元? 根据收集到的数据,作出散点图,然后通过观察图象判断问题所适合的函数模型,利用计算器或计算机的数据拟合功能得出具体的函数解析式,再用得到的函数模型解决相应的问题,这是函数应用的一个基本过程.应注意的是,用已知的函数模型刻画实际问题时,由于实际问题的条件与得到已知模型的条件会有所不同,因此往往需要对模型进行修正.函数模型应用过程 利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法对得到的数学模型予以解答,求出结果;(4)将数学问题的解代入实际问题进行核查.舍去不合题意的解,并作答.函数模型应用步骤 用框图表示如下:

10000+的老师在这里下载备课资料