3.2.2函数模型的应用实例
一二一、利用具体函数模型解决实际问题1.常见的数学模型有哪些?提示:利用具体函数解决实际问题是我们需要关注的内容,具体函数的运用在生活中有很多体现,在学习完函数这部分内容以后,希望同学们能重点运用一次函数、二次函数、指数函数、对数函数和幂函数、分段函数等常见函数来解决问题.下面是几种常见的函数模型:(1)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(3)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);注意:二次函数模型是高中阶段应用最为广泛的模型,在高考的应用题考查中最为常见.
一二(4)指数函数模型:f(x)=a·bx+c(a,b,c为常数,a≠0,b>0,且b≠1);(5)对数函数模型:f(x)=mlogax+n(m,n,a为常数,m≠0,a>0,且a≠1);(6)幂函数模型:f(x)=axn+b(a,b,n为常数,a≠0,n≠1);(7)分段函数模型:这个模型实则是以上两种或多种模型的综合,因此应用也十分广泛.
一二2.做一做:(1)某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……现有2个这样的细胞,分裂x次后得到细胞的个数y与x的函数关系是()A.y=2xB.y=2x-1C.y=2xD.y=2x+1(2)假设某种商品靠广告销售的收入R与广告费A之间满足关系R=a,广告效应D=R-A,则当A=时,取得最大的广告效应.解析:(1)分裂一次后由2个变成2×2=22(个),分裂两次后变成4×2=23(个),……,分裂x次后变成2x+1个.
一二二、拟合函数模型1.应用拟合函数模型解决问题的基本过程
一二2.解答函数实际应用问题时,一般要分哪四步进行?提示:第一步:分析、联想、转化、抽象;第二步:建立函数模型,把实际应用问题转化为数学问题;第三步:解答数学问题,求得结果;第四步:把数学结果转译成具体问题的结论,做出解答.而这四步中,最为关键的是把第二步处理好.只要把函数模型建立妥当,所有的问题即可在此基础上迎刃而解.
一二3.做一做:“红豆生南国,春来发几枝.”图中给出了红豆生长时间t(月)与枝数y(枝)的散点图,那么红豆的枝数与生长时间的关系用下列哪个函数模型拟合最好?()A.指数函数y=2tB.对数函数y=log2tC.幂函数y=t3D.二次函数y=2t2解析:根据所给的散点图,观察可知图象在第一象限,且从左到右图象是上升的,并且增长速度越来越快,根据四个选项中函数的增长趋势可得,用指数函数模型拟合最好.答案:A
探究一探究二探究三探究四思维辨析当堂检测探究一一次函数与二次函数模型的应用例1(1)某厂日生产文具盒的总成本y(元)与日产量x(套)之间的关系为y=6x+30000,而出厂价格为每套12元,要使该厂不亏本,至少日生产文具盒()A.2000套B.3000套C.4000套D.5000套(2)某水果批发商销售每箱进价为40元的苹果,假设每箱售价不得低于50元且不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱.价格每提高1元,平均每天少销售3箱.①求平均每天的销售量y(箱)与销售单价x(元/箱)之间的函数关系式;②求该批发商平均每天的销售利润w(元)与销售单价x(元/箱)之间的函数关系式;③当每箱苹果的售价为多少元时,可以获得最大利润?最大利润是多少?
探究一探究二探究三探究四思维辨析当堂检测(1)解析:因利润z=12x-(6x+30000),所以z=6x-30000,由z≥0解得x≥5000,故至少日生产文具盒5000套.答案:D(2)解:①根据题意,得y=90-3(x-50),化简,得y=-3x+240(50≤x≤55,x∈N).②因为该批发商平均每天的销售利润=平均每天的销售量×每箱销售利润.所以w=(x-40)(-3x+240)=-3x2+360x-9600(50≤x≤55,x∈N).③因为w=-3x2+360x-9600=-3(x-60)2+1200,所以当x