课题§3.2.1几类不同增长的函数模型实际问题引入,激发学牛兴趣.强化基木方法,规范基本格式.饶平二中2010学年度第一学期高一数学(必修1)教案教学目标知识与技能结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性.过程与方法能够借助信息技术,利用函数图彖及数据表格,对几种常见增长类型的函数的增长状况进行比较,初步休会它们的增长差界性;收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幕函数、分段函数等),了解函数模型的广泛应用.情感态度与价值观体验函数是描述宏观世界变化规律的基木数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.教学重点将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长芳异,结合实例体会肓线上升、指数爆炸、对数增长等不同函数类型增长的含义.教学难点怎样选择数学模型分析解决实际问题.课时1课吋教学方法教学程序与环节设计:选择变量、建立模型,利用数据表格、函数图象讨论模型,体会不同函数模型增长的含义及其差界.总结例题的探究方法,并进一步探索研究幕函数、指数函数、対数函数的增长差界,形成结论性报告.师生交流共同小结,归纳一般的应用题的求解方法步骤.收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用.教学过程:1、创设情景:材料:澳大利亚兔了数“爆炸”在教科书第三章的章头图中,有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的犬敌,兔子数量不断增加,不到100年,兔子们占领了整个澳人利亚,数量达到75亿只•可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头
痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家釆用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.师生双边互动:师:指出:一般而言,在理想条件(食物或养料充足,空间条件充裕,气候适宜,没冇敌害等)下,种群在一定时期内的增t大致符合“J”型曲线;在冇限环境(空间冇限,食物有限,有捕食者存在等)中,利培增长到一定程度后不增长,曲线呈“S”型.可用指数函数描述一个种群的前期增长,用对数函数描述后期增长的组织探究:例1.假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一犬回报10元,以后每犬比前一天多回报10元;方案三:第一天冋报().4元,以示每天的回报比前一天翻一番.请问,你会选择哪种投资方案?探究:1)在本例中涉及哪些数量关系?如何用函数描述这些数量关系?2)分析解答(略)3)根据例1表格屮所提供的数据,你对三种方案分别表现出的回报资金的增长差异冇什么认识?4)你能借助计算器或计算机作出函数图彖,并通过图彖描述一下三种方案的特点吗?5)根据以上分析,你认为就作出如何选择?师:创设问题情境,以问题引入能激起学生的热悄,使课堂里的有效思维增强.生:阅读题目,理解题意,思考探究问题.师:引导学生分析本例中的数量关系,并思考应当选择怎样的函数模型来描述.生:观察表格,获収信息,体会三种函数的增长差界,特别是指数爆炸,说出自己的发现,并进行交流.师:引导学生观察表格屮三种方案的数量变化情况,对于“增加量”进行比较,体会“直线增氏”、“指数爆炸”等.师:引导学生利用函数图象分析三种方案的不同变化趋势.生:对三种方案的不同变化趋势作出描述,并为方案选择提供依据.师:引导学牛分析影响方案选择的因索,使学牛认识到要做出正确选择除了考虑每犬的收益,述要考虑一段时间内的总收益.生:通过自主活动,分析整理数据,并根据其中的信息做出推理判断,获得累计收益并给出本全的完整解答,然后全班进行交流.例2.某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,月•奖金y(单位:万元)随销售利润兀(单位:力•元)的增加而增加但奖金不超过5力元,同时奖金不超过利润的25%.现冇三个奖励模型:y=Q.25xy=log7x+\y=1.002v.问:具屮哪个模型能符合公司的要求?
探究:1)本例涉及了哪儿类函数模型?本例的实质是什么?2)你能根据问题屮的数据,判定所给的奖励模型是否符合公司要求吗?3)通过对三个函数模型增长差异的比较,写出例2的解答.师:引导学住分析三种函数的不同增长情况对于奖励模型的影响,使学生明确问题的实质就是比较三个函数的增长情况.生:进一步体会三种基木函数模型在实际中的广泛应用,体会它们的增长差异.师:引导学生分析问题使学生得出:要对每一个奖励模型的奖金总额是否超出5万元,以及奖励比例是否超过25%进行分析,才能做出正确选择.生:分析数据特点少作用判定每一个奖励模型是否符合要求.师:引导学牛利用解析式,结合图象,对三个模型的增长情况进行分析比较,写出完整的解答过程.生:进一步认识三个函数模型的增长差异,对问题作岀具体解答.探究与发现:幕函数、指数函数、对数函数的增长差界分析:你能否仿照前面例题使用的方法,探索研究幕函数y=xn(n>0).指数函数y=a\a>1)、对数函数y=log“x(a>1)在区间(0,+Q上的增长差异,并进行交流、讨论、概括总结,形成较为准确、详尽的结论性报告.师:引导学生仿照前而例题的探究方法,选用具体函数进行比较分析.生:仿照例题的探究方法,选用具体函数进行研究、论证,并进行交流总结,形成结论性报告.师:対学牛.的结论进行评析,借助信息技术手段进行验证演示.练习:1)教材Pl】6练习1、2;2)教材P“9练习.小结:(收获与体会)让学牛说说这节课的收获,进一步体会三种不同增长的函数模型的增长差异及其实际应用.作业布置:教学反思:通过实例和计算机作图体会、认识直线上升、指数爆炸、对数增长等不同函数模型的增长的含义,认识数学的价值,认识数学与现实生活、与其他学科的密切联系,从而体会数学的实用价值,亨受数学的应用美.授课教师:授课班级:授课时间:周星期