高一年级数学彭萍3.2.2函数模型的应用实例第二课时函数最值和函数拟合
复习巩固有甲、乙两家兵乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小王准备下个月从这两家中的一家租用一张球台开展活动,其活动时间不少于15小时,也不超过40小时,问小王应选择哪家俱乐部较合算?
问题提出从实际问题出发,构建相应的函数关系,通过分析函数的有关性质解决实际问题,是函数应用的重点内容.对此类应用问题,我们应如何展开研究?
知识探究(一):函数最值问题问题:某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表所示:240280320360400440480日均销售量/桶1211109876销售单价/元思考1:你能看出表中的数据有什么变化规律?
思考2:假设每桶水在进价的基础上增加x元,则日均销售量为多少?销售单价/元6789101112日均销售量/桶480440400360320280240思考3:假设日均销售利润为y元,那么y与x的关系如何?思考4:这个经营部怎样定价才能获得最大利润?
用函数解决应用性问题中的最值问题的一般思路:选取自变量建立函数关系确定定义域回答实际问题求函数最值
知识探究(二):函数拟合问题问题:某地区不同身高(单位:cm)的未成年男性的体重(单位:kg)平均值如下表:55.0547.2538.8531.1126.8620.92体重170160150140130120身高17.5015.0212.159.997.906.13体重11010090807060身高
思考1:上表提供的数据对应的散点图大致如何?身高(cm)体重(kg)o55.0547.2538.8531.1126.8620.92体重170160150140130120身高17.5015.0212.159.997.906.13体重11010090807060身高
思考2:根据这些点的分布情况,可以选用那个函数模型进行拟合,使它能比较近似地反映这个地区未成年男性体重y(kg)与身高x(cm)的函数关系?身高(cm)体重(kg)o
思考5:若体重超过相同身高男性体重的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm,体重为78kg的在校男生的体重是否正常?思考3:怎样确定拟合函数中参数a,b的值?思考4:如何检验函数的拟合程度?
思考6:你能总结一下用拟合函数解决应用性问题的基本过程吗?收集数据画散点图选择函数模型求函数模型检验用函数模型解释实际问题YesNo
课堂练习P106练习:1,2.
P107习题3.2A组:6;B组1、2.《大视野》33课时课后作业