2019年高中数学人教A版必修1 第三章 函数的应用 3.2.2 函数模型的应用实例 高效测评试题
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2019年高中数学3.2.2函数模型的应用实例高效测评试题新人教A版必修1一、选择题(每小题5分,共20分)1.某天0时,小鹏同学生病了,体温上升,吃过药后感觉好多了,中午时他的体温基本正常(正常体温约为37℃),但是下午他的体温又开始上升,直到半夜才感觉身上不那么发烫了.下面能大致反映出小鹏这一天(0时至24时)体温变化情况的图象是(  )解析: 观察选项A中的图象,体温逐渐降低,不符合题意;选项B中的图象不能反映“下午他的体温又开始上升”这一过程;选项D中的图象不能体现“下午他的体温又开始上升”与“直到半夜才感觉身上不那么发烫了”这一过程.答案: C2.已知A,B两地相距150千米,某人开汽车以60千米/时的速度从A地到达B地,在B地停留1小时后再以50千米/时的速度返回A地,则汽车离开A地的距离x关于时间t(小时)的函数解析式是(  )A.x=60tB.x=60t+50tC.x=D.x=解析: 显然出发、停留、返回三个过程中行车的速度是不同的,故应分三段表示函数,选D.答案: D3.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y(只)与引入时间x(年)的关系为y=alog2(x+1),若该动物在引入一年后的数量为100只,则第7年它们发展到(  )A.300只        B.400只C.600只D.700只解析: 将x=1,y=100代入y=alog2(x+1)得,100=alog2(1+1),解得a=100,所以x=7时,y=100log2(7+1)=300. 答案: A4.用长度为24m的材料围成一矩形场地,并且中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为(  )A.3mB.4mC.5mD.6m解析: 设隔墙的长为xm,矩形面积为S,则S=x·=x(12-2x)=-2x2+12x=-2(x-3)2+18,所以当x=3时,S有最大值为18.答案: A二、填空题(每小题5分,共10分)5.已知某工厂生产某种产品的月产量y与月份x满足关系y=a·(0.5)x+b,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件.则此厂3月份该产品产量为________.解析: 由⇒⇒y=-2·(0.5)x+2,所以3月份产量为y=-2·(0.5)3+2=1.75万件.答案: 1.75万件6.某药厂研制出一种新型药剂,投放市场后其广告投入x(万元)与药品利润y(万元)存在的关系为y=xα(α为常数),其中x不超过5万元.已知去年投入广告费用为3万元时,药品利润为27万元,若今年广告费用投入5万元,预计今年药品利润为________万元.解析: 由已知投入广告费用为3万元时,药品利润为27万元,代入y=xα中,即3α=27,解得α=3,故函数关系式为y=x3.所以当x=5时,y=125(万元).答案: 125三、解答题(每小题10分,共20分)7.某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=其中x是仪器的月产量.(1)将利润表示为月产量的函数f(x);(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)解析: (1)设月产量为x台,则总成本为20000+100x,从而f(x)= (2)当0≤x≤400时,f(x)=-(x-300)2+25000.∴当x=300时,有最大值为25000;当x>400时,f(x)=60000-100x是减函数,f(x)

10000+的老师在这里下载备课资料