3.2.2 函数模型的应用实例知识点 几类常见函数模型名称解析式条件一次函数模型y=kx+bk≠0反比例函数模型y=+bk≠0二次函数模型一般式:y=ax2+bx+c顶点式:y=a2+a≠0指数函数模型y=b·ax+ca>0且a≠1,b≠0对数函数模型y=mlogax+na>0且a≠1,m≠0幂函数模型y=axn+ba≠0,n≠1建立函数模型应把握的三个关口(1)事理关:通过阅读、理解,明白问题讲什么,熟悉实际背景,为解题打开突破口.(2)文理关:将实际问题的文字语言转化为数学的符号语言,用数学式子表达数学关系.(3)数理关:在构建数学模型的过程中,利用已有的数学知识进行检验,从而认定或构建相应的数学问题.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)在一次函数模型中,系数k的取值会影响函数的性质.( )(2)在幂函数模型的解析式中,a的正负会影响函数的单调性.( )答案:(1)√ (2)√2.某厂日产手套总成本y(元)与手套日产量x(副)的关系式为y=5x+4000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为( )A.200副 B.400副C.600副D.800副解析:利润z=10x-y=10x-(5x+4000)≥0.解得x≥800.
答案:D3.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( )A.14400亩B.172800亩C.20736亩D.17280亩解析:设年份为x,造林亩数为y,则y=10000×(1+20%)x-1,∴x=4时,y=17280.故选D.答案:D4.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为:y=其中,x代表拟录用人数,y代表面试人数.若应聘的面试人数为60,则该公司拟录用人数为________.解析:令y=60,若4x=60,则x=15>10,不合题意;若2x+10=60,则x=25,满足题意;若1.5x=60,则x=400,即x2.3.因为x∈N*,所以x≥3,所以3≤x≤6,x∈N*.当x>6时,y=[50-3(x-6)]x-115.令[50-3(x-6)]x-115>0,得3x2-68x+1154,显然甲的用水量也超过4吨,y=24x-9.6.所以y=(2)由于y=f(x)在各段区间上均为单调递增,
当x∈时,y≤f=≈=3.8,所以该公司全年投入的研发资金开始超过200万元的年份是2019年.答案:B12.某学校开展研究性学习活动,一组同学获得了下面的一组试验数据.x1.99345.18y0.991.582.012.353.00现有如下5个模拟函数:①y=0.58x-0.16;②y=2x-3.02;③y=x2-5.5x+8;④y=log2x;⑤y=x+1.74.请从中选择一个模拟函数,使它比较近似地反映这些数据的规律,应选________.(填序号)解析:画出散点图如图所示.由图可知,上述点大体在函数y=log2x上(对于y=0.58x-0.16,可代入已知点验证不符合),故选择y=log2x可以比较近似地反映这些数据的规律.答案:④13.已知A,B两地相距150km,某人开汽车以60km/h的速度从A地到达B地,在B地停留1小时后再以50km/h的速度返回A地.(1)把汽车离开A地的距离s表示为时间t的函数(从A地出发时开始),并画出函数的图象;
(2)把车速v(km/h)表示为时间t(h)的函数,并画出函数的图象.解析:(1)①汽车由A地到B地行驶th所走的距离s=60t(0≤t≤2.5).②汽车在B地停留1小时,则汽车到A地的距离s=150(2.5