3.2.2函数模型的应用实例(2)
一家旅社有100间相同的客房,经过一段时间的经营实践,旅社经理发现,每间客房每天的价格与住房率之间有如下关系:每间每天房价住房率20元18元16元14元65%75%85%95%要使每天收入达到最高,每间定价应为()A.20元B.18元C.16元D.14元C
知识探究(一):已知函数模型问题例1、在海拔xm处的大气压强为yPa,y与x之间的函数关系式是y=cekx,其中c,k为常量。已知某地某天在海平面的大气压为1×105Pa,1000m高空的大气压为0.50×105Pa,求500m高空的大气压强。
知识探究(二):函数拟合问题
问题:某地区不同身高(单位:cm)的未成年男性的体重(单位:kg)平均值如下表:55.0547.2538.8531.1126.8620.92体重170160150140130120身高17.5015.0212.159.997.906.13体重11010090807060身高
思考1:上表提供的数据对应的散点图大致如何?身高(cm)体重(kg)o55.0547.2538.8531.1126.8620.92体重170160150140130120身高17.5015.0212.159.997.906.13体重11010090807060身高
思考2:根据这些点的分布情况,可以选用那个函数模型进行拟合,使它能比较近似地反映这个地区未成年男性体重y(kg)与身高x(cm)的函数关系?身高(cm)体重(kg)o
思考5:若体重超过相同身高男性体重的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm,体重为78kg的在校男生的体重是否正常?思考3:怎样确定拟合函数中参数a,b的值?思考4:如何检验函数的拟合程度?
思考6:你能总结一下用拟合函数解决应用性问题的基本过程吗?收集数据画散点图选择函数模型求函数模型检验用函数模型解释实际问题YesNo