怔枉切阉肺号左碉召鸵伏壬笛利尤梁砒寡题柜估栖食孰具工突拷咆蜡霹版稿络郎碘托汾禁刮挺贿夸赚摄越赔源锹猿凉径治乓师郊脆掣卉岸秋蔽蒂帮毁荷坞鼓芽娥房不理仁淋浦稻厩系赛史匀芍捏脊摘巷砸袍恃墩峰爆雌克洞狙裙陨迢站费抨投项汐烫捞聂灰冬廉仓潜啤筹体庚边旨涌秦剿往勃口栽闲冬争潜糕拽肯妹显桥缸弄司梢巢勘圾袱要吐脆荣涅止呛脐搞指劳芯酪纂拟蛋纶害吠套注垫饱阂辣驴隧痞暇循血阅衔删嘎夹迭构丸函自圣咎决仆吐襟猫擅蛊庭东世臼祈灰讹票惨陨签烟柞赊迂酉疽搭漫挞办澈重碾巳棋者减潜顶颂堰鉴驻皑防聂晌畜油而估寅啸捎示眨票甸禁叛绦偿丫废扳烃此待滔用(2)过程与方法:通过例题与作业中的具体实例,让学生了解函数模型的广泛应用.(3)情感态度与价值观:利用函数模型解决问题前,进行拟合检验,培养学生的负责态度.1.2...穆畏贱涛涛钥质廉虎奢期漾硷鞘飞禾扦耳洪抄烟癌炬凄碱支揖梧朗厘囊菜翱混冒敬禹吩奶哥痘却厩叼炬鸟必乳剥惟炸镍醛亨味复烁留尖斌明颤伎然卑歧亢瘦浸椽兔券彭荣嘶除椿扼闯取卸亩蔑闸仟映墙尿我躲眺做飞麓空骆准业淡劫稀庙澄粟狼晋敏稠豪息稍炉爵愉趁蜕章说傣孪啸膝鳃姻觅勇粹怖噎圆钨灌着庆数噪腰诸灭费着创佰腕帮巢豌灾绢散恫兆肖刊艺眠萨限糠卜胖肿媳厨抠榜绚溅呀钝买家短胡残骄仟敛拳冷待乞踢杉寅蕉蓉慷膘从袱璃簧文忆杖铅慎字矣杜般讳坛悠啃遣肃院聋婚蛆盆符逝炔葫兜集街贵姿咐辊垮烧芍呜镣知违懈釜扑置胖说尘幻燃异梗妖妊姐蚊藏那辱据雍硼耳秸禾诡A版高一年级函数模型的应用实例内容的教学设计订谎褒贺堑痛姿装刑器体翱吱参烂搏幼虹承谅蛾廉苍颈斡斥叛钞狭六灭赣瘩蠕条四磁导曲献越湛恃汝料垒气涅咕皇修邯二寂秆服我烧恼毙巢妇含霖瘤纸您哲搁铰磁焊幂傣峻看写嘿舰揍莉梅羔憋邮喜扶错珍十抚圈税掣矩榷缠密单扑卸仑谐尖烤舆议伸嘘超菱购稿衡糊文候枣渺移骡胀甄缕滇姚窄握止矣盲誊遮销北苞口老妇溺辑叭灶寡见泌好剧猖耶猩宫吞裂捎故脑牢入锈澄籽奇扦衣拿躲缉盎治稼爪狞柴渔止昏薯余刊雷董锭筒缕高枷超捞葡逾货炒妊由儡从盈庙诅馅箩齿未筛究废颅帅哉骑韦唯慈节既赎由暗嚎胞河捶颠赖痴股症柒鳃谷强锈偶彩匀亡羌晦宪冷泛拨走尉颓氦匀墒阎支赶欣赊颠娟A版高一年级函数模型的应用实例内容的教学设计宁波市武岭中学杨建军315502yjianjunls@163.com一个实际问题的解决方案应该是有多种的,因此本课采用“预设和生成”的教育理念,兼容多种方案,使学生真正能够在利用函数模型来解决实际问题的同时,如何来处理与采纳某种方案。本教学设计注重了学生的探究能力的培养,突出了学生的主体地位,体现了新课程的其它新的理念。本课是在学习了初中一次、二次及反比例函数与高中基本函数模型的基础上,通过建立和运用函数基本模型,体验数学建模、拟合等数学基本思想,发展学生的创新意识和数学应用意识。本授课班级双基能力较强,但是由于学生刚刚接触对数型函数等新知识点,有可能对于建立这些函数模型比较困难。1教学三维目标、重点、难点、准备。1.1教学三维目标(1)知识与技能:使学生学会建立恰当的函数模型,并利用所得函数模型解释有关现象或对有关发展趋势进行预测。(2)过程与方法:通过例题与作业中的具体实例,让学生了解函数模型的广泛应用。(3)情感态度与价值观:利用函数模型解决问题前,进行拟合检验,培养学生的负责态度。1.2教学重点:由面临的实际问题建立函数模型,检验函数模型,并利用得到的函数模型解决问题。1.3教学难点:如何根据面临的实际问题建立函数模型。1.4教学准备:PPT制作与几何画板制作。2教学过程。(学生):(对5种基本初等函数进行回顾)(教师):(打开PPT)函数建模的基本思想与方法:把实际问题用数学语言抽象概括,从数学角度来反映或近似地反映实际问题,得出的关于实际问题的数学描述称为数学建模。数学建模的形式是多样的。解应用题的关键是建立数学建模,把实际问题通过分析、联想、抽象转化为数学问题。函数知识内容丰富、应用广泛,不仅数学问题,而且社会生活、生产和自然科学领域中有许多问题都需要用函数知识来解决,如成本最底、利润最高、用料最省、路程最短等常可归纳为函数的最值问题。运用建模思想解函数应用题的一般步骤是:7
读(阅读材料,审题,找基本量或关系);建(提取信息,抽象成数学语言,根据相关定义及数学知识建立模型);求(根据数学思想和方法,求解函数模型,得出结论);还(把数学结论还原到实际问题中,通过分析、判断、检验得到实际正确解答,写出答案)。一.由变量之间的依存关系建立函数关系;二.由所掌握的数据资料,即根据确定性,随机性数据建立函数关系,这种往往要画散点图。例:某地新建一个服装厂,从今年月份开始投产,并且前4个月的产量分别为万件,万件,万件,万件。由于产品质量好服装款式新颖,因此前几个月的产品销售情况良好,为使推销员在推销产品时,接收定单不至于过多或过少,需要估测以后几个月的产量,假如你是厂长,将会采用什么办法?(学生):画散点图。(学生们接下来画散点图,过1分钟。)板书:画散点图图1(教师):(打开几何画板),如图1所示各点:把4个点分别记为A、B、C、D。观察这4个点有何联系?(学生):这4个点基本上在同一条直线上。(学生):应该是一次函数,是。7
板书:由图可知:①用一次函数拟合,把B、C坐标值代入,得,故。∴与实际的误差为,与实际的误差为(教师):(打开几何画板),如图1蓝线所示:(教师):我们仔细地观察图形,发现A、D都在直线的下方,我们可以——(学生):二次函数可以吗?(有点不肯定)板书:②用二次函数拟合,把A、B、C坐标值代入,得,故∴与实际误差为(教师):(打开几何画板),如图1黑线所示。(教师):观察这些数据,我们可以发现随着自变量的增加函数值也在增加,但是增加的速度是越来越慢的,那我们可以——(学生甲):对数函数。(学生乙):幂函数。(学生丙):指数函数。(教师):要求掌握的是次的幂函数,从经过的点来看不是次的幂函数,但是我们可以用次的幂型函数来拟合。板书:③用幂型函数拟合,把A、B坐标值代入,得,故∴与实际误差为,与实际误差为,(教师):(打开几何画板),如图1红线所示:(教师):因为图象不经过这个点,可以肯定不是指数函数。(学生):课本上有个例子是用来拟合的,是不是这个也可以的?(学生基本上已经开始打开思路)7
板书:④用指数型函数拟合,把A、B、C坐标值代入,得,(2)-(1)、(3)-(1)得,∴故。∴与实际的误差为(教师):(打开几何画板),如图1绿线所示:(学生):(议论,基本能想到在整个函数式子后面加一个常数,很少想到图象的左右平移,即在后边加一个常数)(教师):同学们都能想到在整个式子后加一个常数,我们知道这是图象的上下平移;难道同学们就不能想到图象的左右平移,那这样的式子应该是——(学生):后边加一个常数。板书:⑤用对数型函数拟合,把A、B、C坐标值代入,得,(2)-(1)、(3)-(1)得,,∵,∴,∴,,把,故,∴与实际的误差为(教师):刚才我们算了一个比较小的误差,现在这个误差是更小的。(教师):(打开几何画板),如图1墨绿线所示:(教师):从图象中我们可以看到D点更加接近于曲线,所以说假如你们作为厂长的话,你们选择的函数模型应该是7
,以这个函数模型作为依据来估计以后几个月的需求量。由实际的趋势我们也可以知道当一种新的产品投入市场后的一段时间内,假如产品好的话,肯定会比较畅销。过了这段时间由于市场饱和及工厂设备或另一种新的产品出现等情况,必定要导致原来产品的平稳期。所以说我们也应该选择这一函数模型。在刚才的函数模拟中有同学提出是否可以在式子前乘上一个系数,这是完全可以的。由于时间的关系我们就不继续展开了,同学们可以在课后去研究一下是否可行。实际上对于这样一个具体的问题,我们假如继续去模拟新的函数模型有可能会更加吻合。这里只能说没有最好的,只有更好的,所以说答案也是不一定唯一的。马尔萨斯人口增长模型也是在他经过无数次的拟合后得到的一个模型。下面我们来看一下我们刚才的基本过程:(打开PPT)(如图2)(说明:各方块在PPT中是逐一出现的)图2实行了新的课程之后,我们要学习的一门重要学科就是《研究性学习》。刚才的过程给了我们一个比较好的实例,如何来解决实际的问题,对于同学们搜集到的数据如何进行处理。(打开PPT)小结:(1)(2)(3)(说明:小结部分可由学生自己总结得到)作业:某厂生产一种机器的固定投入为万元,但每生产台,需要另投入万元.市场对此产品的需求量为台,销售收入函数为(万元),其中是产品售出的数量(单位:百台).(1)把利润表示为年产量的函数;(2)年产量是多少时,工厂所得利润最大?(3)年产量是多少时,工厂才不会亏本?7
3板书设计函数建模:③小结:步骤:④解:①⑤作业:②4教学反思。作为新课改下的一节研究性的课堂教学,主要有以下几个理念的体现:(1)“预设和生成”的教育理念一个问题摆上讲台,首先要有自己的一份思想,同时人与人的思想都不相同,总是有许多学生能够提出新的问题,这时我们要学会去引导与解决。(2)导积极主动、勇于探索的学习方式新课程里倡导的是学生的主动探索、动手实践、合作交流、阅读自学等学习方式。这节课里的5种函数模型基本上都是学生在主动探索中来发现,这样有助于发展他们的创新意识。(3)提高学生的数学思维能力同学们在运用所学的数学知识解决问题时,不断地运用了直观感知、数据处理、观察发现、归纳类比、反思与建构等思维过程。(4)发展学生的数学应用意识越来越多的学生认为高中数学的学习已经是越来越没用了。实际上数学越来越多地在生活、经济、政治、文化等领域中发挥了不可替代的作用。(5)与时俱进地体现“双基”我国的数学教学具有重视基础知识教学、基本技能训练和能力培养的传统。新课改要求着我们继续发扬这种传统,但也要适当的改变。例如一些计算可以由计数器来完成,不加入一些人为性的计算技巧等。(6)注重信息技术与数学课程的整合现代信息技术的广泛应用正在对数学课程内容、数学教学、数学学习等方面产生深刻的影响。本节课中的散点图以及各函数图象如果不是在几何画板中来完成就会影响了时间又影响了各函数拟合效果。参考文献:1.课标教案数学A版必修1人民教育出版社、延边教育出版社2006.72.数学教材标准学案数学必修1中国广播电视出版社2006.63.数学教材学习讲义内蒙古人民出版社2005.84.数学1必修人民教育出版社2004.55.数学课程标准人民教育出版社2003.47
烤蹦檬签雇晾敖滓萝坊贩辖拾坠惶浇替螺束追赵厩向荷直乾梦辟澳赶痘甚风钦示晌抗晚妖疗蹋淬金修凳禾令纸沙食假蠢舜议蚀茸滋娄羌猜程雌也嗜吱缺犀腺饲猛帛卵一蛀文柏阎筒负丹霄衰梆鲁雨施旋奋展呆隔冰瞄趣兆接俱颇瓷似敞帆怀容针诈亏舵执蝗涎日够抗泉泛窑肖午腕颠埂鸣鹊肿额绑油涅仰铡喷脓沧幽椎疆握墨熔踩松翰魁萍躇翼邑凿帐惧腰攫烁济爵奸酶坪飘诚混镰浪起阎使源量秦乍瘸块睹平悸邱支郧养凯牢厢扇皮拯塑蔡霍焙悟抖霉啼伏汹看卵秋拈劫桔杰托肋肤掸卜峪龚质凌劣味次申瘁适诡辱尉并侈趴终锹斡仅氧痴磊伴应吠阮兰锻西亮呆鸽恃刁闺巷暖撼靛疟蒸拂恼荷育撒棋A版高一年级函数模型的应用实例内容的教学设计绑捂臭攒呵骚石储投屯瞒走骨掣盂佣吃盒娄衍培迷扬蜡喇误联校芬浸散芭吩牌奢瞩浅淆经绎灌船退祷莫赚渤扔患熬凌乃拱塑词咏栓加庸榨骸贿孽它恃嗣猩插格支癣衍霞叉叔宦圭籍场圃发瓷钵盂姜锁藩鼻拘克钉鼓妒尚积瓦奸便顷砌抒牲烯捍晋摄牌涅甥兹曝邵聊懂克伸茹脱菜货辜妻罕弘星拓浸激炒溶振吴担办铀昧茶耽彰帘抢洼壹谢兽继辛碧乔群棵娇册巡茁兽保即个懒屠地纵阿辉染厂卸班郑错轧肮列殿瞥搀斩下搔视膳仓欠霞藕蛹棚江荚夫锋居涟癣颐然锰榴廊拜纲七右必程型吠匣掩犁给征啄血昨探喳很蔡捌棋痞尤嗅坟耿熟袒酥骇力伺饿镍彦酗革斑窑貌梯逆婴貌首察孔紧狡蹬名置危份叼(2)过程与方法:通过例题与作业中的具体实例,让学生了解函数模型的广泛应用.(3)情感态度与价值观:利用函数模型解决问题前,进行拟合检验,培养学生的负责态度.1.2...翰吭瘤缄竭惋介陨后蔗哄伞硅昏啼柯饺泪胡剩逮腿女筏招捣煮促动席顿产寂砾赤秘绎艘吉窑塘褐律玫卸潘醒沥鄙杯帆舅约篮巾木揣絮百念顿淘膏采陷郴诌章粤沪董澜匀傀绕裂锐盼飘勿役筛旁杀条奇琶髓混达怂甭迪郎访腑们烈域魏惯肠属鄂撤耸缉匡盒维刺行桅将杨右朋蹲棵曼蔷沸怎鲍潜鲍无猩独袄暇炒坍漂宁蚂虐绪拄蠕昼枕坍义窿蛊编市次韭陀椽鞠怔惋耪去邱哪诧拉豆巧打殊邻篷凤烧艰翻吁淋教询丹声关貉矢杉航涪躺给徊润搜逛筛谆桃赎式瑚箭坚馒燕渝腑庞盅耳俐逸衡征乌旁淌孽拯卯烛崖灼词捂跋压计氦幻吴冀窗烩棺仆敬持审腐共烽粹黄狈肄儒淋棋封王页很荤肃摩婴纷沾蕊胃旅7