§3.2.2函数模型的应用实例第一课时应用已知函数模型解决实际问题【教学目标】能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.【教学重难点】1.教学重点:运用一次函数、二次函数模型解决一些实际问题.2.教学难点:将实际问题转变为数学模型.【教学过程】(一)创设情景,揭示课题引例:大约在一千五百年前,大数学家孙子在《孙子算经》中记载了这样的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只有几只鸡和兔?你知道孙子是如何解答这个“鸡兔同笼”问题的吗?你有什么更好的方法?老师介绍孙子的大胆解法:他假设砍去每只鸡和兔一半的脚,则每只鸡和兔就变成了“独脚鸡”和“双脚兔”.这样,“独脚鸡”和“双脚兔”脚的数量与它们头的数量之差,就是兔子数,即:47-35=12;鸡数就是:35-12=23.比例激发学生学习兴趣,增强其求知欲望.可引导学生运用方程的思想解答“鸡兔同笼”问题.(二)结合实例,探求新知.例1某农家旅游公司有客房300间,每间日房租为20元,每天都客满.公司欲提高档次,并提高租金,如果每间客房日增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?引导学生探索过程如下:1)本例涉及到哪些数量关系?2)应如何选取变量,其取值范围又如何?3)应当选取何种函数模型来描述变量的关系?4)“总收入最高”的数学含义如何理解?根据老师的引导启发,学生自主,建立恰当的函数模型,进行解答,然后交流、进行评析.[略解:]设客房日租金每间提高2元,则每天客房出租数为300-10,由>0,且300-10>0得:0<<30设客房租金总上收入元,则有:=(20+2)(300-10)=-20(-10)2+8000(0<<30)由二次函数性质可知当=10时,=8000.所以当每间客房日租金提高到20+10×2=40元时,客户租金总收入最高,为每天8000元.变式:某列火车众北京西站开往石家庄,全程277km,火车出发10min开出13km后,以120km/h匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系式,并求火车离开北京2h内行驶的路程.例2要建一个容积为8m3,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,试求应当怎样设计,才能使水池总造价最低?并求此最低造价.解析:选择合适的数学模型建立函数关系解:设长方体底面的长为xm,则宽为(4/x)m,水池的总造价为y元y=480+80[4x+(16/x)]
当x=2时,总造价最低为1760元点评:利用基本不等式变式:某工厂今年1月、2月、3月生产某种产品的数量分别为1万件,1.2万件,1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据用一个函数模拟该产品的月产量与月份的关系,模拟函数可以选用二次函数或函数.已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.【板书设计】一、已知函数模型二、例题例1变式1例2变式2【作业布置】教材P116练习1、2§3.2.2函数模型的应用实例第一课时应用已知函数模型解决实际问题课前预习学案一.预习目标:熟悉几种常见的函数增长型二.预习内容:阅读课本内容思考:主要的函数增长性有哪些三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容 课内探究学案一.学习目标:能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.学习重点:运用一次函数、二次函数模型解决一些实际问题.学习难点:将实际问题转变为数学模型.二.学习过程解决实际问题的步骤1)首先建立直角坐标系,画出散点图;2)根据散点图设想比较接近的可能的函数模型:一次函数模型:二次函数模型:幂函数模型:指数函数模型:(>0,)
利用待定系数法求出各解析式,并对各模型进行分析评价,选出合适的函数模型;由于尝试的过程计算量较多,可同桌两个同学分工合作,最后再一起讨论确定.例1某农家旅游公司有客房300间,每间日房租为20元,每天都客满.公司欲提高档次,并提高租金,如果每间客房日增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?变式:某列火车众北京西站开往石家庄,全程277km,火车出发10min开出13km后,以120km/h匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系式,并求火车离开北京2h内行驶的路程.例2要建一个容积为8m3,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,试求应当怎样设计,才能使水池总造价最低?并求此最低造价.变式:某工厂今年1月、2月、3月生产某种产品的数量分别为1万件,1.2万件,1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据用一个函数模拟该产品的月产量与月份的关系,模拟函数可以选用二次函数或函数.已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.
课后练习与提高一.选择题1.客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h的速度匀速行驶1小时到达丙地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过的路程s与时间t之间关系的图象中,正确的是()A.B.C.D.2.一种商品连续两次降价10%后,欲通过两次连续提价恢复原价,则每次应提价()A.10%B.20%C.5%D.11.1%3.今有一组实验数据如下:1.993.04.05.16.121.54.047.51218.01现准备用下列函数中一个近似地表示这些数据满足的规律,其中最接近的一个是()A.B.C.D.二.填空题4.假设某商品靠广告销售的收入R与广告费A之间满足关系R=·,那么广告效应为,当A=时,取得最大广告效应.5.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为2个)经过3小时后,这种细菌可由1个分裂成__________个三.解答题6.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两用户该月用水量分别为5x,3x吨.(1)求y关于x的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.
参考答案
初三化学酸碱盐测试题一、选择题(以下各题只有一个符合要求的答案,每题1分,共15分)1.为合理利用“垃圾’’资源,提倡垃圾分类回收,生活中废弃的铁锅、铝制易拉罐以归为一类加以回收,它们属于()A.有机物B.无机盐C.金属或合金D.难溶性碱2.将铁钉置于下列四种环境中,容易生锈的是()A.置于潮湿的空气中B.置于干操的空气中C.浸没于煮沸的水中D.浸没于油中3.能一次性鉴别NaCl、BaCl2、Na2CO3,三种无色溶液的试剂是()A.稀硫酸B.盐酸C.石灰水D.硝酸银溶液4.—些食物的近似pH如下:葡萄3.5——4.5,苹果2.9,——3.3,牛奶6.3,——6.6,鸡蛋清7.6——8.0。下列说法错误的是()A.胃酸过多的人不应多食苹果B.苹果汁的酸性比葡萄汁强C.鸡蛋清是碱性食物D.葡萄汁能使紫色石蕊试液变蓝5.下列药品未经密封保存,敞口放置一段时间后,质量增加并发生化学反应的是()①苛性②碳酸⑧浓盐酸④浓硫酸⑤熟石灰
A.①⑧B.②④C.①⑤D.④⑤6.我国著名化学家侯德榜先生作出的重大贡献是()A.发明黑火药B.创造湿法冶金C.改进纯碱的生产D.发现了新元素7.现有①Ba(NO3)2:溶液、②KCI溶液、⑧K2SO4溶液、④CuSO4溶液,不用其他试剂,可通过实验方法将它们一一鉴别开来,鉴别出来的先后顺序可能是()A.①②⑧④B.①④⑧②C.④⑧②①D.④①⑧②8.向盛有Fe、Cu的烧杯中加入过量稀硫酸,所得溶液中的溶质有()A.1种B.2种C3种D4种9.CuCI2和MgCl2的混合溶液中加入过量锌粉,充分反应后过滤,留在滤纸上的物质是()A.ZnB.CuC.Zn和CuD.Cu和Mg10.不符合“酸和盐反应生成另一种酸和另一种盐”的反应是()A.盐酸和硝酸钠溶液B.稀硫酸和氯化钡溶液C.稀盐酸和硝酸银溶液D.硝酸和碳酸钙11.某工厂排放的五色废水经测定PH=2,为治理废水,需将此废水的PH调至7~8,为达此目的,并采用经济可行的方法,需在此废水中加入()A.生石灰B.氢氧化钠C.铁粉D.盐酸12.以铁矿石(含Fe203)为原料炼铁时,一氧化碳是()A.氧化剂B.还原剂C.催化剂D.燃料
13.某溶液中含Fe3+,Mg2+,S042-,NO3-,其中Fe3+,Mg2+,S042-的个数比为3:3:1,可推知溶液中Fe3+,S042-,N03-的个数比是()A.3:2:1B.1:2:1C.3:1:15D.3:1:1314.分别取少量下列各组物质同时加到足量水中,得到无色透明溶液的是()A.FeCI3、Ba(OH)2、KNO3,B.Na2CO3、CaCl2、Zn(NO3)2C.CuS04、KCI、NaCID.MgCl2、NaN03、Na2S0415.欲除去括号内的少量杂质,选用试剂不正确的是()A.NaOH溶液(Na2CO3)选用稀盐酸·B.C(CuO)选用稀硫酸