1.1柱、锥、台、球的结构特征
加入VIP免费下载

1.1柱、锥、台、球的结构特征

ID:1215348

大小:1.38 MB

页数:34页

时间:2022-08-12

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
1.1柱、锥、台、球的结构特征 1、构成空间几何体的基本元素长方体的面长方体的棱长方体的顶点一个几何体是由点、线、面构成的,点、线、面是构成几何体的基本元素。 2、多面体若干个平面多边形围成的几何体,叫多面体.围成多面体的各个多边形叫多面体的面;相邻两个面的公共边叫多面体的棱;棱和棱的公共点叫多面体的顶点; 有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的多面体叫做棱柱。其余各面叫做棱柱的侧面。3、棱柱两个互相平行的面叫做棱柱的底面;两个面的公共边叫做棱柱的棱。两个侧面的公共边叫做棱柱的侧棱。与两个底面都垂直的直线夹在两底面间的线段长叫做棱柱的高。底面多边形与侧面的公共顶点叫做棱柱的顶点。 棱柱的结构特征DABCEFF’A’E’D’B’C’(1)底面互相平行。(2)侧面是平行四边形。(3)侧棱相互平行。由定义知(1),(3)显然成立由于底面互相平行,所以底面与侧面的交线互相平行由于侧棱互相平行,所以侧面是平行四边形以上为构成棱柱的3个条件,缺一不可 问题1:有两个面互相平行,其余各面都是四边形的几何体是棱柱吗?答:不一定是.如右图所示,不是棱柱.问题2:有两个面互相平行,其余各面都是平行四边形的几何体是棱柱吗?答:不一定是.如右图所示,不是棱柱. 2.两个底面与平行于底面的截面是全等的多边形;3.过不相邻的两条侧棱的截面是平行四边形.1.侧棱都相等,侧面是平行四边形;棱柱的性质 棱柱的分类棱柱的底面可以是三角形、四边形、五边形……我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱……1.侧棱不垂直于底的棱柱叫做斜棱柱。2.侧棱垂直于底的棱柱叫做直棱柱。3.底面是正多边形的直棱柱叫做正棱柱。 理论迁移例1如图,截面BCEF将长方体分割成两部分,这两部分是否为棱柱?ABCDA1B1C1D1EF 平行六面体:底面是平行四边形的四棱柱直平行六面体:侧棱与底面垂直的平行六面体长方体:底面是矩形的直平行六面体正方体:棱长都相等的长方体特殊的四棱柱 棱锥的底面棱锥的侧面棱锥的顶点棱锥的侧棱棱锥的高SABCDEO4、棱锥(1)一个面是多边形(2)其余各面都是有一个公共顶点的三角形 棱锥的分类三棱锥四棱锥五棱锥(四面体) 正棱锥如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥是正棱锥.OSABCDE OSABCDEFH正棱锥的性质(1)各侧棱相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,叫做正棱锥的斜高(2)正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形。 5、棱台的概念用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫作棱台。下底面上底面侧面侧棱高顶点 斜高用正棱锥截得的棱台叫作正棱台。正棱台正棱台的侧面是全等的等腰梯形,它的高叫作正棱台的斜高。正棱锥正四棱台 判断方法:(1)上、下底面互相平行且相似;(2)各条侧棱的延长线相交于同一点. 棱柱、棱锥、棱台的关系 练习:下列关于多面体的说法中:(1)底面是矩形的直棱柱是长方体;(2)底面是正方形的棱锥是正四棱锥;(3)两底面都是正方形的棱台是正棱台;(4)正四棱柱就是正方体;其中正确的是_________(1) 一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面。封闭的旋转面围成的几何体叫作旋转体。6、旋转体 以矩形的一边所在直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱。7.圆柱的结构特征AA’OO’轴底面侧面母线 顶点SABO底面轴侧面母线以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥。8.圆锥的结构特征 OO’用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台.9.圆台的结构特征 10.球的结构特征以半圆的直径所在的直线为旋转轴,将半圆旋转所形成的曲面叫作球面,球面所围成的几何体叫作球体,简称球。球心半径直径O 想一想:用一个平面去截一个球,截面是什么?O用一个截面去截一个球,截面是圆面。球面被经过球心的平面截得的圆叫做大圆。球面被不过球心的截面截得的圆叫球的小圆。 球、圆柱、圆锥、圆台过轴的截面分别是什么图形?想一想: 练习1、将一个直角梯形绕其较短的底所在的直线旋转一周得到一个几何体,关于该几何体的以下描绘中,正确的是()A、是一个圆台B、是一个圆柱C、是一个圆柱和一个圆锥的简单组合体D、是一个圆柱被挖去一个圆锥后所剩的几何体D 2、以下关于简单旋转体的说法中:(1)在圆柱的上、下底面圆周上各取一点的连线就是圆柱的母线;(2)圆台的轴截面不可能是直角梯形;(3)圆锥的轴截面可能是直角三角形;(4)过圆锥任意两条母线所作的截面中,面积最大的是轴截面;其中正确的是________(2)(3) 日常生活中我们常用到的日用品,比如:消毒液、暖瓶、洗洁精等的主要几何结构特征是什么?11、简单组合体由柱、锥、台、球组成了一些简单的组合体.认识它们的结构特征要注意整体与部分的关系.圆柱圆台圆柱 现实世界中的物体表示的几何体,除柱体、锥体、台体和球体等简单几何体外,还有大量的几何体是由简单几何体组合而成的,这些几何体叫做简单组合体。简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,如左图所示简单组合体的结构特征一种是由简单几何体截去或挖去一部分而成,如右图所示 例如图,四边形ABCD为平行四边形,EF∥AB,且EF

10000+的老师在这里下载备课资料