空间几何体
柱、锥、台、球的结构特征棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。底面顶点侧面侧棱
1.用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDE-A1B1C1D1E12.用表示一条对角线端点的两个字母表示,如:棱柱BCDABCDA1A1A1B1B1B1C1C1C1D1D1E1ABCAE棱柱的表示法
棱柱的分类1、按侧棱与底面是否垂直可分为:1)侧棱不垂直于底的棱柱叫做斜棱柱。
2)侧棱垂直于底的棱柱叫做直棱柱。3)底面是正多边形的直棱柱叫做正棱柱。
2、按底面的边数分为:棱柱的底面可以是三角形、四边形、五边形、……把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……三棱柱四棱柱五棱柱
棱柱斜棱柱直棱柱正棱柱
思考题:1、侧棱不垂直于底面且底面为三角形的棱柱叫做___________;2、侧棱垂直于底面且底面为四边形的棱柱叫做____________;3、侧棱垂直于底面且底面为正五边形的棱柱叫做____________。斜三棱柱直四棱柱正五棱柱
1.侧棱都相等,侧面是平行四边形;棱柱的性质2.两个底面与平行于底面的截面是全等的多边形;3.过不相邻的两条侧棱的截面是平行四边形
1.斜棱柱、直棱柱的底面为任意多边形。正棱柱的底面为正多边形。思考题:1、斜棱柱、直棱柱和正棱柱的底面、侧面各有什么特点?2.斜棱柱的侧面为平行四边形。直棱柱的侧面为矩形。正棱柱的各个侧面为全等的矩形。
思考题:2、棱柱集合、斜棱柱集合、直棱柱集合、正棱柱集合之间存在怎样的包含关系?直棱柱正棱柱棱柱斜棱柱
例1:下列命题中正确的是()A、有两个面平行,其余各面都是四边形的几何体叫棱柱。B、有两个面平行,其余各面都是平行四边形的几何体叫棱柱。(举例)C、有两个侧面是矩形的棱柱是直棱柱。(举例)D、有两个相邻侧面垂直与底面的棱柱是直棱柱。D典型例题
例1:下列命题中正确的是()A、有两个面平行,其余各面都是四边形的几何体叫棱柱。B、有两个面平行,其余各面都是平行四边形的几何体叫棱柱。(举例)C、有两个侧面是矩形的棱柱是直棱柱。(举例)D、有两个相邻侧面垂直与底面的棱柱是直棱柱。D典型例题
棱锥的实例
棱锥的结构特征棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。侧面底面侧棱顶点SDBAC棱锥也用表示顶点和底面各顶点的字母表示。
思考:有一个面是多边形,其余各面都是三角形的立体图形一定是棱锥吗?
圆柱的结构特征圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱。圆柱和棱柱统称为柱体。圆柱用表示它的轴的字母表示。B’AA’OBO’轴侧面母线
圆锥的结构特征圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥。轴ACB母线侧面底面圆锥和棱锥统称为锥体圆锥用表示它的轴的字母表示
棱台与圆台的结构特征棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。上底面下底面棱台和圆台统称为台体。
思考题:1.平行于圆柱,圆锥,圆台的底面的截面是什么图形?2.过圆柱,圆锥,圆台的旋转轴的截面是什么图形?性质1:平行于底面的截面都是圆。性质2:过轴的截面(轴截面)分别是全等的矩形,等腰三角形,等腰梯形。
判断题:(1)在圆柱的上下底面上各取一点,这两点的连线是圆柱的母线.( )(2)圆台所有的轴截面是全等的等腰梯形.( )(3)与圆锥的轴平行的截面是等腰三角形.( )
球的结构特征球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体。直径OABC球心大圆
练习:1、下列命题是真命题的是()A以直角三角形的一直角边所在的直线为轴旋转所得的几何体为圆锥;B以直角梯形的一腰所在的直线为轴旋转所得的旋转体为圆柱;C圆柱、圆锥、棱锥的底面都是圆;D有一个面为多边形,其他各面都是三角形的几何体是棱锥。A2、过球面上的两点作球的大圆,可以作()个。1或无数多