§1.1.1柱、锥、台、球的结构特征学案一.学习目标:认识柱、锥、台、球的结构特征,并能运用这些特征描述现实生活中简单物体的结构.逐步培养观察能力和抽象概括能力.二.重点、难点: 重点: 难点:三.知识要点:结构特征图例棱柱(1)两底面相互平行,其余各面都是平行四边形;(2)侧棱平行且相等.圆柱(1)两底面相互平行;(2)侧面的母线平行于圆柱的轴;(3)是以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体.棱锥(1)底面是多边形,各侧面均是三角形;(2)各侧面有一个公共顶点.圆锥(1)底面是圆;(2)是以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体.棱台(1)两底面相互平行;(2)是用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分.圆台(1)两底面相互平行;(2)是用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分.球(1)球心到球面上各点的距离相等;(2)是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体.四.自主探究:(一)例题精讲:【例1】请描述下列几何体的结构特征,并说出它的名称.(1)由7个面围成,其中两个面是互相平行且全等的五边形,其它面都是全等的矩形;(2)如右图,一个圆环面绕着过圆心的直线l旋转180°.解:(1)特征:具有棱柱的特征,且侧面都是全等的矩形,底面是正五边形.几何体为正五棱柱.(2)由两个同心的大球和小球,大球里去掉小球剩下的部分形成的几何体,即空心球.【例2】若三棱锥的底面为正三角形,侧面为等腰三角形,侧棱长为2,底面周长为9,求棱锥的高.解:底面正三角形中,边长为3,高为,中心到顶点距离为,则棱锥的高为.【例3】用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm,求圆台的母线长.解:设圆台的母线为,截得圆台的上、下底面半径分别为,.
根据相似三角形的性质得,,解得.所以,圆台的母线长为9cm.点评:用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,构设相关几何变量的方程组而解得.【例4】长方体的一条对角线与一个顶点处的三条棱所成的角分别为,求与的值.解:设长方体的一个顶点出发的长、宽、高分别为a、b、c,相应对角线长为l,则.,∴=1.,∴=2.点评:从长方体的一个顶点出发的对角线与三条棱,均位于直角三角形中,利用直角三角形中的边角关系“”、“”而求.关键在于找准直角三角形中的三边,斜边是长方体的对角线,角的邻边是各棱长,角的对边是相应矩形面的对角线.五.目标检测:(一)基础达标1.一个棱柱是正四棱柱的条件是().A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱2.下列说法中正确的是().A.以直角三角形的一边为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆D.圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径3.下列说法错误的是().A.若棱柱的底面边长相等,则它的各个侧面的面积相等B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.六角螺帽、三棱镜都是棱柱D.三棱柱的侧面为三角形4.用一个平面去截正方体,所得的截面不可能是().A.六边形B.菱形C.梯形D.直角三角形5.下列说法正确的是().A.平行于圆锥某一母线的截面是等腰三角形B.平行于圆台某一母线的截面是等腰梯形C.过圆锥顶点的截面是等腰三角形D.过圆台上底面中心的截面是等腰梯形6.设圆锥母线长为l,高为,过圆锥的两条母线作一个截面,则截面面积的最大值为.7.若长方体的三个面的面积分别为6,3,2,则此长方体的对角线长为.(二)能力提高8.长方体的全面积为11,十二条棱的长度之和为24,求这个长方体的一条对角线长.
9.如图所示,长方体.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示.如果不是,说明理由.(三)探究创新10.现有一批长方体金属原料,其长宽高的规格为12×3×3.1(长度单位:米).某车间要用这些原料切割出两种长方体,其长宽高的规格第一种为3×2.4×1,第二种为4×1.5×0.7.若这两种长方体各需900个,假设忽略切割损耗,问至少需多少块金属长方体原料?如何切割?此时材料的利用率是多少?(计算到小数点后面3位)