技能演练基础强化1.(2011·期末考试)一个铜质的五棱柱的底面积为16cm2,高为4cm,现将它熔化后铸成一个正方体铜块(不计损耗),那么铸成的铜块的棱长为( )A.2cm B.cmC.4cmD.8cm解析 设正方体的棱长为a,则16×4=a3,∴a=4.∴正方体的棱长为4cm.答案 C2.(2011·山东济南外国语学校质检)已知正方体外接球的体积是π,那么正方体的棱长等于( )A.2B.C.D.解析 πR3=π,∴R=2.∴正方体的棱长为a,则a=2R=4,∴a==.答案 C3.一空间几何体的三视图如图所示,则该几何体的体积为( )
A.2π+2B.4π+2C.2π+D.4π+解析 该空间几何体为一圆柱和一四棱锥组成的,圆柱的底面半径为1,高为2,体积为2π,四棱锥的底面边长为,高为,所以体积为×()2×=,所以该几何体的体积为2π+.答案 C4.(2011·湖南)设下图是某几何体的三视图,则该几何体的体积为( )
A.9π+42B.36π+18C.π+12D.π+18解析 该几何体是由一个球与一个长方体组成的组合体,球的直径为3,长方体的底面是边长为3的正方形,高为2,故所求体积为2×32+π3=π+18,故选D.答案 D5.(2012·河北高三质检)如图,是一个几何体的主视图、侧视图、俯视图,且正视图、侧视图都是矩形,则该几何体的体积是( )
A.24B.12C.8D.4解析 该几何体是一个长方体挖去了一个三棱柱后剩下的几何体,则其体积为2×3×4-×(2×3)×4=12.答案 B6.一个几何体的三视图如图所示,则这个几何体的体积等于( )A.4 B.6 C.8 D.12解析 由三视图想象并画出直观图后计算.根据三视图画出直观图如图所示,此几何体是一个四棱锥V—ABCD,VD⊥底面ABCD
,底面为一个直角梯形.VV—ABCD=SABCD·VD=××2=4.答案 A7.(2011·山东外国语学校质检)已知某几何体的俯视图是如图所示的矩形,主视图是一个底边长为8、高为4的等腰三角形,左视图是一个底边长为6、高为4的等腰三角形,则该几何体的体积为________.解析 该几何体是一个四棱锥,底面是矩形,面积为48,高为4,所以它的体积V=×48×4=64.答案 64
8.(2011·甘肃期末测试)如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的体积之比为________.解析 设球的半径为R,∴V柱=πR2·2R=2πR3,V锥=πR2·2R=,V球=πR3,∴V柱:V锥:V球=2πR3::=3:1:2.答案 3:1:2能力提升9.(2011·辽宁营口普通高中期末教学质检)下列三个图中,左边是一个正方体截去一个角后所得多面体的直观图.右边两个是主视图和左视图.(1)请按照画三视图的要求画出该多面体的俯视图(不要求叙述作图过程);(2)求该多面体的体积(尺寸如图).
解析 (1)俯视图如图所示,(2)V=23-××2×2×1=8-=.10.如图所示正三棱台ABC—A1B1C1中,AB:A1B1=1:2,求三棱锥A1—ABC,B—A1B1C,C—A1B1C1的体积之比.解析 设棱台的高为h1,S△ABC=S,则S△A1B1C1=4S.∴VA1-ABC=S△ABC·h=Sh,VC-A1B1C1=S△A1B1C1·h=Sh,又V台=h(S+2S+4S)=Sh,∴VB-A1B1C=V台-VA1-ABC-VC-A1B1C1=Sh--=Sh.∴体积比为1:2:4.
品味高考11.(2010·湖北理13)圆柱形容器内部盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.解析 设球的半径为r,则πr2·6r=πr2·8+3·πr3.∴r=4.答案 412.(2011·天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m3.( )
解析 由三视图知该几何体由两个长方体组成,上面的长方体的长、宽、高分别为1、1、2,下面的长方体的长、宽、高分别为2、1、1.所以该几何体的体积V=1×1×2+2×1×1=4m3.答案 4