第周第章第课时年月日课题1.1.2简单组合体的结构特征课型新课三维目标:1.掌握简单组合体的概念,学会观察、分析图形,提高空间想象能力和几何直观能力.2.能够描述现实生活中简单物体的结构,学会通过建立几何模型来研究空间图形,培养学生的数学建模思想.教学重点:描述简单组合体的结构特征.教学难点:描述简单组合体的结构特征.教学方法:学生学法:教学过程:总结简单几何体的分类:在我们的生活中,酒瓶的形状是圆柱吗?我们的教学楼的形状是柱体吗?钢笔、圆珠笔呢?这些物体都不是简单几何体,那么如何描述它们的结构特征呢?教师指出课题:简单几何体的结构特征.思路1例1请描述如图2所示的组合体的结构特征.图2活动:回顾简单几何体的结构特征,再将各个组合体分解为简单几何体.依据柱、锥、台、球的结构特征依次作出判断.解:图2(1)是由一个圆锥和一个圆台拼接而成的组合体;图2(2)是由一个长方体截去一个三棱锥后剩下的部分得到的组合体;图2(3)是由一个圆柱挖去一个三棱锥剩下的部分得到的组合体.点评:本题主要考查简单组合体的结构特征和空间想象能力.变式训练如图3所示,一个圆环绕着同一个平面内过圆心的直线l旋转180°,想象并说出它形成的几何体的结构特征.
图3答案:一个大球内部挖去一个同球心且半径较小的球.例2连接正方体的相邻各面的中心(所谓中心是指各面所在正方形的两条对角线的交点),所得的一个几何体是几面体?并画图表示该几何体.活动:先画出正方体,然后取各个面的中心,并依次连成线观察即可.连接相应点后,得出图形如图4(1),再作出判断.(1)(2)图4解:如图4(1),正方体ABCD—A1B1C1D1,O1、O2、O3、O4、O5、O6分别是各表面的中心.由点O1、O2、O3、O4、O5、O6组成了一个八面体,而且该八面体共有6个顶点,12条棱.该多面体的图形如图4(2)所示.点评:本题中的八面体,事实上是正八面体——八个面都是全等的正三角形,并且以每个顶点为其一端,都有相同数目的棱.由图还可见,该八面体可看成是由两个全等的四棱锥经重合底面后而得到的,而且中间一个四边形O2O3O4O5还是正方形,当然其他的如O1O2O6O4等也是正方形.为了增强立体效果,正方体应画得“正”些,而八面体的放置应稍许“倾斜”些,并且“后面的”线,即被前面平面所遮住的线,如图中的O1O5、O6O5、O5O2、O5O4应画成虚线.变式训练连接上述所得的几何体的相邻各面的中心,试问所得的几何体又是几面体?答案:六面体(正方体).教学后记